(0,5 điểm)
Tìm giá trị lớn nhất của biểu thức $A=\dfrac{2023}{x^{2022}+2023}+2022$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm giá trị lớn nhất của P = \(\dfrac{|x-2022|-|x-2023|+|x-2024|+2022}{|x-2022|+|x-2023|+|x-2024|}\)
\(B=\dfrac{\dfrac{2ab}{3}-\dfrac{3ab}{2}}{-\dfrac{5bb}{6}}\)
\(=\dfrac{\dfrac{4ab}{6}-\dfrac{9ab}{6}}{-\dfrac{5bb}{6}}\)
\(=\dfrac{-\dfrac{5ab}{6}}{-\dfrac{5bb}{6}}=\dfrac{ab.\dfrac{5}{6}}{bb.\dfrac{5}{6}}\)
\(=\dfrac{ab}{bb}=\dfrac{a}{b}\)
Với \(a=\dfrac{2021}{2022};b=\dfrac{2023}{2022}\), ta được:
\(B=\dfrac{2021}{2022}:\dfrac{2023}{2022}=\dfrac{2021}{2022}.\dfrac{2022}{2023}=\dfrac{2021}{2023}\)
a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)
\(\left|x-1\right|^{2023}>=0\forall x\)
=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)
mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)
=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)
\(P=x^{2023}+\left(y-10\right)^{2023}\)
\(=1^{2023}+\left(9-10\right)^{2023}\)
=1-1
=0
c: \(\left|x-3\right|>=0\forall x\)
=>\(\left|x-3\right|+2>=2\forall x\)
=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)
mà \(\left|y+3\right|>=0\forall y\)
nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)
=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y-3=0
=>x=3 và y=3
\(a=2022.\left|x^2+1\right|+2023\)
\(\Rightarrow a=2022.\left(x^2+1\right)+2023\left(\left|x^2+1\right|>0,\forall x\right)\)
mà \(\left(x^2+1\right)\ge1,\forall x\)
\(\Rightarrow a=2022.\left(x^2+1\right)+2023\ge2022.1+2023=4045\)
\(\Rightarrow GTNN\left(a\right)=4045\left(x=0\right)\)
Ta có: \(\left|x\right|>=0\forall x\)
=>\(\left|x\right|+2023>=2023\forall x\)
=>\(\dfrac{2022}{\left|x\right|+2023}< =\dfrac{2022}{2023}\forall x\)
=>\(A< =\dfrac{2022}{2023}\forall x\)
Dấu '=' xảy ra khi |x|=0
=>x=0
Vậy: \(A_{max}=\dfrac{2022}{2023}\) khi x=0
\(A=\dfrac{2022}{\left|x\right|+2023}\)
Ta thấy: \(\left|x\right|\ge0\forall x\)
\(\Rightarrow\left|x\right|+2023\ge2023\forall x\)
\(\Rightarrow\dfrac{1}{\left|x\right|+2023}\le\dfrac{1}{2023}\forall x\)
\(\Rightarrow A=\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)
Dấu \("="\) xảy ra khi: \(x=0\)
Vậy \(Max_A=\dfrac{2022}{2023}\) khi \(x=0\).
\(A=\dfrac{3\cdot\dfrac{a}{b}-\dfrac{-a}{b}}{-\dfrac{-5a}{b}+\dfrac{4a}{b}}\\ =\left(\dfrac{3a}{b}+\dfrac{a}{b}\right):\left(\dfrac{5a}{b}+\dfrac{4a}{b}\right)\\ =\dfrac{4a}{b}:\dfrac{9a}{b}\\ =\dfrac{4a}{b}\cdot\dfrac{b}{9a}\\ =\dfrac{4}{9}\)
Vậy `a=2021/2022` ; `b=2023/2022` thì `A=4/9`
olm sẽ hướng dẫn em làm bài này như sau:
Bước 1: em giải phương trình tìm; \(x\); y
Bước 2: thay\(x;y\) vào P
(\(x-1\))2022 + |y + 1| = 0
Vì (\(x-1\))2022 ≥ 0 ∀ \(x\); |y + 1| ≥ 0 ∀ y
⇒ (\(x\) - 1)2022 + |y + 1| = 0
⇔ \(\left\{{}\begin{matrix}\left(x-1\right)^{2022}=0\\y+1=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\) (1)
Thay (1) vào P ta có:
12023.(-1)2022 : )(2.1- 1)2022 + 2023
= 1 + 2023
= 2024
oh no bài thứ nhất là dạng chứng minh cs đúng ko ,
ko thể nào là dạng tìm a,b,c đc-.-
Ta có: \(A=\dfrac{2023}{x^{2022}+2023}+2022\)
Lại có: \(x^{2022}\ge0\forall x\)
\(\Leftrightarrow x^{2022}+2023\ge2023\forall x\)
\(\Leftrightarrow\dfrac{1}{x^{2022}+2023}\le\dfrac{1}{2023}\forall x\)
\(\Leftrightarrow\dfrac{2023}{x^{2022}+2023}+2022\le\dfrac{2023}{2023}+2022=2023\forall x\)
\(\Leftrightarrow A\le2023\forall x\)
Dấu \("="\) xảy ra khi: \(x^{2022}=0\Leftrightarrow x=0\)
Vậy \(Max_A=2023\) tại \(x=0\).
Biểu thức �A lớn nhất khi và chỉ khi �2022+2023x2022+2023 nhỏ nhất.
Ta có: �2022≥0x2022≥0 với mọi �x. Dấu bằng xảy ra khi và chỉ khi �=0x=0.
Vậy khi �=0x=0, �A đạt giá trị lớn nhất bằng 20232023.