(5.n +2)chia hết cho(9-2.n) (với n<5)
đây là bài toán đội tuyển lớp 6 nha. mình nát óc với nó rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ 29 - 1 = \(\left(2^3\right)^3\) - 1 = 83 - 1 = (8-1)( 82 +8.1 + 1) = (8-1).73 \(⋮\) 73
b/ 56 - 104 = 54(52 - 24) = 54 (25 - 16) = 54 .9 chia hết cho 9
c, (n+6)2-(n-6)2=(n+6-n+6)(n+6+n-6)(hđt số 3
=12 .2n=24n
b: 9^2n có chữ số tận cùng là 1
=>9^2n+14 có chữ số tận cùng là 5
=>9^2n+14 chia hết cho 5
c: n(n^2+1)(n^2+4)
=n(n-2)(n-1)(n+1)(n+2)+10n^3
Vì n;n-2;n-1;n+1;n+2 là 5 số liên tiếp
nên n(n-2)(n-1)(n+1)(n+2) chia hết cho 5
=>n(n^2+1)(n^2+4) chia hết cho 5
a) Nếu n = 5k => n(n+5) = 5k.(5k + 5) = 25k(k+1) chia hết cho 25
Nếu n = 5k +1 => n(n + 5) = (5k + 1).(5k+6) = 5k.5k + 5k.6 + 1.5k + 6 = (25k2 + 35k) + 6 không chia hết cho 5
Nếu n = 5k + 2 => n(n + 5) = (5k + 2)(5k + 7) = (25k2 + 35k + 10k) + 14 không chia hết cho 5
Nếu n = 5k + 3 => n(n + 5) = (5k + 3)(5k + 8) = (25k2 + 55k) + 24 không chia hết cho 5
Nếu n = 5k + 4 => n(n + 5) = (5k + 4).(5k + 9) = (25k2 + 45k + 20k) + 36 không chia hết cho 5
Vậy với mọi n thì n(n+5) hoặc chia hết cho 25 hoặc không chia hết cho 5
b,c tương tự:
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
Bài 8:
a) Ta có: \(2^9-1=\left(2^3-1\right)\cdot\left(2^6+2^3+1\right)\)
\(=7\cdot\left(64+8+1\right)=7\cdot73⋮73\)(đpcm)
b) Ta có: \(5^6-10^4=5^4\cdot5^2-5^4\cdot2^4=5^4\left(5^2-2^4\right)\)
\(=5^4\left(25-16\right)=5^4\cdot9⋮9\)(đpcm)
c) Ta có: \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)
\(=4\cdot\left(2n+2\right)=4\cdot2\cdot\left(n+1\right)=8\left(n+1\right)⋮8\)(đpcm)
d) Ta có: \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)
\(=12\cdot2n=24n⋮24\)(đpcm)
dạng toán chứng minh hả bạn.
ta xét:
\(\frac{5n+2}{9-2n}=\frac{9-2n-7+7n}{9-2n}=\frac{9-2n}{9-2n}-\frac{7-7n}{9-2n}\)
\(=1-7.\frac{\left(1-n\right)}{9-2n}\)
Để \(\left(5n+2\right)⋮\left(9-2n\right)\Leftrightarrow\left(1-n\right)⋮\left(9-2n\right)\)
Giả sử \(\left(1-n\right)⋮\left(9-2n\right)\)
\(\Rightarrow2\left(1-n\right)⋮\left(9-2n\right)\)
\(\Rightarrow\left(2-2n\right)⋮\left(9-2n\right)\)
\(\left(9-2n-7\right)⋮\left(9-2n\right)\)
Vì \(\left(9-2n\right)⋮\left(9-2n\right)\Rightarrow-7⋮\left(9-2n\right)\)
\(\Leftrightarrow9-2n\inƯ\left(7\right)\Rightarrow9-2n\in\left(\pm1;\pm7\right)\)
ta có bảng sau
Vậy để \(\left(5n+2\right)⋮\left(9-2n\right)\Leftrightarrow n\in\left(1;4\right)\)