K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có

AD chung

AH=AE

Do đó: ΔAHD=ΔAED

b: ΔAHD=ΔAED

=>DH=DE

Xét ΔDHK vuông tại H và ΔDEC vuông tại E có

DH=DE

\(\widehat{HDK}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔDHK=ΔDEC

=>DK=DC

=>ΔDKC cân tại D

c: Ta có: ΔDHK=ΔDEC

=>HK=EC

Ta có: AH+HK=AK

AE+EC=AC

mà AH=AE và HK=EC

nên AK=AC

=>A nằm trên đường trung trực của KC(1)

Ta có: DK=DC

=>D nằm trên đường trung trực của CK(2)

Ta có: MK=MC

=>M nằm trên đường trung trực của CK(3)

Từ (1),(2),(3) suy ra A,D,M thẳng hàng

a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có

AD chung

AH=AE

=>ΔAHD=ΔAED

b: ΔAHD=ΔAED

=>DH=DE

mà DE<DC

nên DH<DC

c: Xét ΔDHK vuông tại H và ΔDEC vuông tại E có

DH=DE

góc HDK=góc EDC

=>ΔDHK=ΔDEC 

=>DK=DC

=>ΔDKC cân tại D

d: AH+HK=AK

AE+EC=AC

mà AH=AE và HK=EC

nên AK=AC

mà DK=DC

nên AD là trung trực của KC

mà M là trung điểm của CK

nên A,D,M thẳng hàng

Xet ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE
=>ΔABC=ΔADE

=>BC=DE

a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có

AD chung

AH=AE
=>ΔAHD=ΔAED

b: DH=DE
DE<DC

=>DH<DC

c: Xét ΔAKC có

CH,KE là đường cao

CH căt KE tại D

=>D là trực tâm

=>AD vuông góc KC

a: Xét ΔAHE vuông tại H và ΔADE vuông tại D có

AE chung

AH=AD

=>ΔAHE=ΔADE

=>HE=DE và góc EAH=góc DAE

=>AE là phân giác của góc DAH

AH=AD

EH=ED

=>AE là trung trực của HD

=>I là trung điểm của HD

=>IH=ID

b: Xét ΔEHF vuông tại H và ΔEDC vuông tại D có

EH=ED

góc HEF=góc DEC

=>ΔEHF=ΔEDC

=>EF=EC

28 tháng 3 2022

Đáp án:

a) △ABC∽△HAC△ABC∽△HAC

b) EC.AC=DC.BCEC.AC=DC.BC

c) △BEC∽△ADC△BEC∽△ADC△ABE△ABE vuông cân tại A

Giải thích các bước giải:

a)

Xét △ABC△ABC và △HAC△HAC:

ˆBAC=ˆAHC(=90o)BAC^=AHC^(=90o)

ˆCC^: chung

→△ABC∽△HAC→△ABC∽△HAC (g.g)

b)

Xét △DEC△DEC và △ABC△ABC:

ˆEDC=ˆBAC(=90o)EDC^=BAC^(=90o)

ˆCC^: chung

→△DEC∽△ABC→△DEC∽△ABC (g.g)

→DCEC=ACBC→EC.AC=DC.BC→DCEC=ACBC→EC.AC=DC.BC

c)

Xét △BEC△BEC và △ADC△ADC:

DCEC=ACBCDCEC=ACBC (cmt)

ˆCC^: chung

→△BEC∽△ADC→△BEC∽△ADC (c.g.c)

Ta có: AH⊥BC,ED⊥BCAH⊥BC,ED⊥BC (gt)

→AH//ED→AH//ED

△AHC△AHC có AH//EDAH//ED (cmt)

→AEAC=HDHC→AEAC=HDHC (định lý Talet)

Mà HD=HAHD=HA (gt)

→AEAC=HAHC→AEAC=HAHC

Lại có: △ABC∽△HAC△ABC∽△HAC (cmt)

→ABAC=HAHC→ABAC=HAHC

→AEAC=ABAC→AE=AB→AEAC=ABAC→AE=AB

→△ABE→△ABE cân tại A

Có: AB⊥AE(AB⊥AC)AB⊥AE(AB⊥AC)

→△ABE→△ABE vuông cân tại A

image