K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 5

\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=-1\end{matrix}\right.\)

Do \(x_1\) là nghiệm \(\Rightarrow x_1^2-3x_1-1=0\Rightarrow x_1^2=3x_1+1\)

\(\Rightarrow x_1^3=3x_1^2+x_1\)

\(P=3x_1^2+x_1+3x_2^2+x_2+1988\)

\(=3\left(x_1+x_2\right)^2-6x_1x_2+x_1+x_2+1988\)

\(=3.3^2-6.\left(-1\right)+3+1988=...\)

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=3\\x_1x_2=\dfrac{c}{a}=-1\end{matrix}\right.\)

\(P=x_1^3+3x_2^2+x_2+1988\)

\(=x_1^3+x_2^2\left(x_1+x_2\right)+x_2+1988\)

\(=x_1^3+x_2^3+x_2\left(x_1x_2+1\right)+1988\)

\(=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+x_2\left(x_1x_2+1\right)+1988\)

\(=3^3-3\cdot3\cdot\left(-1\right)+1988\)

=27+9+1988

=2024

13 tháng 1 2023

`1)` Ptr có: `\Delta=3^2-4.5.(-1)=29 > 0 =>`Ptr có `2` nghiệm phân biệt

 `=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=-3/5),(x_1.x_2=c/a=-1/5):}`

Có: `A=(3x_1+2x_2)(3x_2+x_1)`

     `A=9x_1x_2+3x_1 ^2+6x_2 ^2+2x_1x_2`

    `A=8x_1x_2+3(x_1+x_2)^2=8.(-1/5)+3.(-3/5)^2=-13/25`

Vậy `A=-13/25`

____________________________________________________

`2)` Ptr có: `\Delta'=(-1)^2-7.(-3)=22 > 0=>` Ptr có `2` nghiệm pb

 `=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2/7),(x_1.x_2=c/a=-3/7):}`

Có: `M=[7x_1 ^2-2x_1]/3+3/[7x_2 ^2-2x_2]`

     `M=[(7x_1 ^2-2x_1)(7x_2 ^2-2x_2)+9]/[3(7x_2 ^2-2x_2)]`

    `M=[49(x_1x_2)^2-14x_1 ^2 x_2-14x_1 x_2 ^2+4x_1x_2+9]/[3(7x_2 ^2-2x_2)]`

   `M=[49.(-3/7)^2-14.(-3/7)(2/7)+4.(-3/7)+9]/[3x_2(7x_2-2)]`

   `M=6/[x_2(7x_2-2)]`   `(1)`

Có: `x_1+x_2=2/7=>x_1=2/7-x_2`

 Thay vào `x_1.x_2=-3/7 =>(2/7-x_2)x_2=-3/7`

      `<=>-x_2 ^2+2/7 x_2+3/7=0<=>x_2=[1+-\sqrt{22}]/7`

`@x_2=[1+\sqrt{22}]/7=>M=6/[[1+\sqrt{22}]/7(7 .[1+\sqrt{22}]/2-2)]=2`

`@x_2=[1-\sqrt{22}]/7=>M=6/[[1-\sqrt{22}]/7(7 .[1-\sqrt{22}]/2-2)]=2`

Vậy `M=2`

11 tháng 9 2017

Phương trình x 2 − 20x − 17 = 0 có  = 468 > 0 nên phương trình có hai nghiệm x 1 ;   x 2

Theo hệ thức Vi-ét ta có  x 1 + x 2 = − b a x 1 . x 2 = c a ⇔ x 1 + x 2 = 20 x 1 . x 2 = − 17

Ta có

C   =   x 1 3 + x 2 3   = x 1 3 +   3 x 1 2 x 2   + 3 x 1 x 2 2   +   x 2 3   −   3 x 1 2 x 2   −   3 x 1 x 2 2 = ( x 1 + x 2 ) 3 − 3 x 1 x 2 ( x 1 + x 2 )   = 2 3 – 3 . ( − 17 ) . 20   =   9020

Đáp án: D

AH
Akai Haruma
Giáo viên
28 tháng 4 2023

Lời giải:
Theo định lý Viet thì ta có:

$x_1+x_2=-1$

$x_1x_2=-2+\sqrt{2}$

Khi đó:

$D=(x_1+x_2)^3-3x_1x_2(x_1+x_2)=(-1)^3-3(-2+\sqrt{2})(-1)$

$=-1+3(-2+\sqrt{2})=-7+3\sqrt{2}$

NV
26 tháng 3 2022

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{5}{3}\\x_1x_2=-2\end{matrix}\right.\)

\(\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}\)

\(=\dfrac{x_1^2+x_2^2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{\left(-\dfrac{5}{3}\right)^2-2.\left(-2\right)-\left(-\dfrac{5}{3}\right)}{-2-\left(-\dfrac{5}{3}\right)+1}=...\)

18 tháng 10 2018

Phương trình 2 x 2 − 18x + 15 = 0 có  = 61 > 0 nên phương trình có hai nghiệm x 1 ;   x 2

Theo hệ thức Vi-ét ta có

Ta có

( x 1 + x 2 ) 3   = x 1 3 + 3 x 12 x 2 + 3 x 1 x 22   + x 2 3   ⇒   ( x 1 + x 2 ) 3 = x 1 3   + x 2 3   +   3 x 1 x 2 ( x 1 + x 2 ) ⇒ x 1 3 + x 2 3   = ( x 1 + x 2 ) 3 − 3 x 1 x 2 ( x 1 + x 2 )

Nên

C = x 1 3 + x 2 3 = x 1 + x 2 3 - 3 x 1 x 2 ( x 1 + x 2 )  

= 9 3 – 3 . 3 . 15 2 = 1053 2

Đáp án: B

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{6}{2}=-3\\x_1x_2=\dfrac{-3}{2}\end{matrix}\right.\)

Ta có: \(\dfrac{2}{x_1^2}+\dfrac{2}{x_2^2}\)

\(=\dfrac{2x^2_2+2x_1^2}{\left(x_1\cdot x_2\right)^2}\)

\(=\dfrac{2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]}{\left(-\dfrac{3}{2}\right)^2}=\dfrac{2\cdot\left[\left(-3\right)^2-2\cdot\dfrac{-3}{2}\right]}{\dfrac{9}{4}}\)

\(=\dfrac{2\cdot12}{\dfrac{9}{4}}=24\cdot\dfrac{4}{9}=\dfrac{96}{9}=\dfrac{32}{3}\)

14 tháng 5 2023

Áp dụng Viét có: `{(x_1+x_2=-b/a=-9/2),(x_1.x_2=c/a=-3):}`

Ta có:`B=4(x_1 ^2+x_2 ^2)+5x_1.x_2`

`<=>B=4(x_1+x_2)^2-8x_1.x_2+5x_1.x_2`

`<=>B=4(-9/2)^2-3.(-3)`

`<=>B=90`

a: a*c<0

=>(1) có hai nghiệm phân biệt

b: Bạn viết lại biểu thức đi bạn

5 tháng 6 2018

\(\hept{\begin{cases}x_1+x_2=2\\x_1.x_2=-5\end{cases}}\)

\(B=x_1^2+x_2^2=\left(x_2+x_2\right)^2-2x_1.x_2=2^2+2.5=14\)

Câu C phân tích tương tự

21 tháng 3 2022

Cho phương trình: 5 x^2-2\sqrt{5}x+1 = 05x2−25​x+1=0.

Điền số thích hợp vào ô trống:

Biệt thức \Delta=Δ=

×

.

Nghiệm x=x=