\(\dfrac{9}{21}\)+\(\dfrac{6}{49}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(5^6:5^5+\left(\dfrac{4}{9}\right)^0=5^{6-5}+1=5+1=6\)
b) \(\left(\dfrac{3}{7}\right)^{21}:\left(1-\dfrac{40}{49}\right)^3\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^3\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left[\left(\dfrac{3}{7}\right)^2\right]^3\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^6\)
\(=\left(\dfrac{3}{7}\right)^{21-6}=\left(\dfrac{3}{7}\right)^{15}\)
c) \(\left(\dfrac{2}{3}\right)^3-\left(\dfrac{-52}{3}\right)^0+\dfrac{4}{9}\)
\(=\dfrac{8}{27}-1+\dfrac{4}{9}\)
\(=\dfrac{8-27+12}{27}=-\dfrac{7}{27}\)
\(a)5^6:5^5+\left(\dfrac{4}{9}\right)^0=5^1+1=6\)
\(b,\left(\dfrac{3}{7}\right)^{21}:\left(1-\dfrac{40}{49}\right)^3\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{49-40}{49}\right)^3\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^3=\left(\dfrac{3}{7}\right)^{21}:[\left(\dfrac{3}{7}\right)^2]^3\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^6=\left(\dfrac{3}{7}\right)^{21-6}\)
\(=\left(\dfrac{3}{7}\right)^{15}\)
\(c,3.\left(\dfrac{2}{3}\right)^3-\left(\dfrac{-52}{3}\right)^0+\dfrac{4}{9}\)
\(=3.\dfrac{8}{27}-1+\dfrac{4}{9}\)
\(=\dfrac{8}{9}-1+\dfrac{4}{9}\)
\(=\dfrac{8-9+4}{9}=\dfrac{1}{3}\)
a: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\cdot\left(x^2-2x-3\right)=0\)
=>(7x+10)(x-3)=0
=>x=3 hoặc x=-10/7
b: \(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow13\left(x+3\right)+x^2-9-12x-42=0\)
\(\Leftrightarrow x^2-12x-51+13x+39=0\)
\(\Leftrightarrow x^2+x-12=0\)
=>(x+4)(x-3)=0
=>x=-4
a: =>4/x=y/-21=4/7
=>x=7; y=-12
b: =>xy=63
mà x>y
nên \(\left(x,y\right)\in\left\{\left(9;7\right);\left(21;3\right);\left(63;1\right);\left(-7;-9\right);\left(-3;-21\right);\left(-1;-63\right)\right\}\)
c: =>xy=45
mà x<y<0
nên \(\left(x,y\right)\in\left\{\left(-45;-1\right);\left(-15;-3\right);\left(-9;-5\right)\right\}\)
a) \(A=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}.....\dfrac{120}{121}.\dfrac{143}{144}\)
= \(\dfrac{1.3.2.4.3.5.4.6....10.12.11.13}{2^2.3^2.4^2.5^2...11^2.12^2}\)
= \(\dfrac{1.2.12.13}{2^2.12^2}=\dfrac{13}{2.12}=\dfrac{13}{24}\)
b) \(B=\dfrac{5}{9}.\dfrac{21}{25}.\dfrac{45}{49}.\dfrac{77}{81}....\dfrac{357}{361}.\dfrac{437}{441}\)
= \(\dfrac{1.5.3.7.5.9.7.11.....17.21.19.23}{3^2.5^2.7^2....19^2.21^2}=\dfrac{1.3.21.23}{3^2.21^2}\)
= \(\dfrac{23}{3.21}=\dfrac{23}{63}\)
\(=\dfrac{3^{30}}{3^9\cdot7}+\dfrac{2}{3}-\dfrac{11}{7}=\dfrac{3^{21}-11}{7}+\dfrac{2}{3}=\dfrac{3^{22}-33+14}{21}=\dfrac{3^{22}-19}{21}\)
\(\dfrac{7}{21}+\dfrac{-9}{36}=\dfrac{1}{3}+\dfrac{-1}{4}=\dfrac{4}{12}+\dfrac{-3}{12}=\dfrac{1}{12}\)
\(\dfrac{-12}{18}+\dfrac{-21}{35}=\dfrac{-2}{3}+\dfrac{-3}{5}=\dfrac{-10}{15}+\dfrac{-9}{15}=\dfrac{-19}{15}\)
\(\dfrac{-18}{14}+\dfrac{15}{-21}=\dfrac{-9}{7}+\dfrac{-5}{7}=\dfrac{-14}{7}=-2\)
\(\dfrac{3}{21}+\dfrac{-6}{42}=\dfrac{1}{7}+\dfrac{-1}{7}=0\)
\(\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^6\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left[\left(\dfrac{3}{7}\right)^2\right]^6\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^{12}\)
\(=\left(\dfrac{3}{7}\right)^9\)
\(\dfrac{9}{21}+\dfrac{6}{49}=\dfrac{3}{7}+\dfrac{6}{49}=\dfrac{21}{49}+\dfrac{6}{49}=\dfrac{27}{49}\)