K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\dfrac{x^3-3x^2-7x+x^2-3x-7}{x^2-3x-7}=x+1\)

b:\(=\dfrac{x^3+x^2+3x^2+3x+5x+5}{x+1}=x^2+3x+5\)

c:\(=\dfrac{x^3-3x^2-7x+2x^2-6x-14}{x^2-3x-7}=x+2\)

d: \(=\dfrac{x^2\left(x+5\right)+5x+25-25}{x+5}=x^2+5-\dfrac{25}{x+5}\)

a: \(=\dfrac{3x^4-12x^3+12x^3-48x^2+47x^2-168x+168x-672+673}{x-4}\)

\(=3x^3+12x^2+47x+168+\dfrac{673}{x-4}\)

b: \(=\dfrac{x^4-3x^3-7x^2+3x^3-9x^2-21x+15x^2-45x-105+53x+91}{x^2-3x-7}\)

\(=x^2+3x+15+\dfrac{53x+91}{x^2-3x-7}\)

c: \(=\dfrac{x^3-3x^2-7x+x^2-3x-7}{x^2-3x-7}=x+1\)

31 tháng 7 2021

a) x3+4x-5 = x3-x2+x2+4x-5=(x3-x2)+(x2-x)+(5x-5)=x2(x-1)+x(x-1)+5(x-1)=(x2+x+5)(x-1)

b) x3-3x2+4=x3-2x2-x2+4=(x3-2x2)-(x2-4)=x2(x-2)-(x-2)(x+2)=(x2-x+2)(x-2)

c) x3+2x2+3x+2=x3+x2+x2+x+2x+2=(x3+x2)+(x2+x)+(2x+2)=x2(x+1)+x(x+1)+2(x+1)=(x2+x+2)(x+1)

d) bạn xem lại đề đúng ko

e) (x2+3x)2-2(x2+3x)-8=x4+6x3+9x2-2x2-6x-8=x4+6x3+7x2-6x-8=x4-x3+7x3-7x2+14x2-14x+8x-8=(x4-x3)+(7x3-7x2)+(14x2-14x)+(8x-8)=x3(x-1)+7x2(x-1)+14x(x-1)+8(x-1)=(x3+7x2+14x+8)(x-1)=(x3+x2+6x2+6x+8x+8)(x-1)=\(\left[\left(x^3+x^2\right)+\left(6x^2+6x\right)+\left(8x+8\right)\right]\left(x-1\right)\)\(=\left[x^2\left(x+1\right)+6x\left(x+1\right)+8\left(x+1\right)\right]\left(x-1\right)\)\(=\left(x^2+6x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left(x^2+2x+4x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left[\left(x^2+2x\right)+\left(4x+8\right)\right]\left(x+1\right)\left(x-1\right)\)\(=\left[x\left(x+2\right)+4\left(x+2\right)\right]\left(x+1\right)\left(x-1\right)\)=\(\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+4\right)\)

f) (x2+4x+10)2-7(x2+4x+11)+7=(x2+4x+10)2-\(\left[7\left(x^2+4x+11\right)-7\right]\)\(=\left(x^2+4x+10\right)^2-7\left(x^2+4x+10\right)\)\(=\left(x^2+4x+10\right)\left(x^2+4x+3\right)\)

a) Ta có: \(x^3+4x-5\)

\(=x^3-x+5x-5\)

\(=x\left(x-1\right)\left(x+1\right)+5\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+5\right)\)

b) Ta có: \(x^3-3x^2+4\)

\(=x^3+x^2-4x^2+4\)

\(=x^2\left(x+1\right)-4\left(x-1\right)\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-4x+4\right)\)

\(=\left(x+1\right)\cdot\left(x-2\right)^2\)

c) Ta có: \(x^3+2x^2+3x+2\)

\(=x^3+x^2+x^2+x+2x+2\)

\(=x^2\left(x+1\right)+x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+2\right)\)

d) Ta có: \(x^2+2xy+y^2+2x+2y-3\)

\(=\left(x+y\right)^2+2\left(x+y\right)-3\)

\(=\left(x+y\right)^2+3\left(x+y\right)-\left(x+y\right)-3\)

\(=\left(x+y\right)\left(x+y+3\right)-\left(x+y+3\right)\)

\(=\left(x+y+3\right)\left(x+y-1\right)\)

29 tháng 11 2019

a) A = ( x 2 – 6x)B.

b) A = (-x – 8)B + 2

c) A = (x + 3)B + 6.

19 tháng 11 2021

Answer:

Gọi thương của phép chia là \(P\left(x\right)\)

\(x^3-3x+a\)

\(=\left(x^2-2x+1\right).P\left(x\right)\forall x\)

\(\Leftrightarrow x^3-3x+a\)

\(=\left(x-1\right)^2.P\left(x\right)\forall x\)

Với \(x=1\) (Để cho \(\left(x-1\right)^2=0\))

\(\Rightarrow1^3-3.1+a=0\)

\(\Rightarrow1-3+a=0\)

\(\Rightarrow a=2\)

30 tháng 9 2017

Gọi số khối của 3 đồng vị trên là a , b ,c

=> a + b + c = 87 (1)

b-a=1 (2)
Ta có ct tính ngtử khối trung bình là:

A=aA1+aA2+aA3/100

92,23a+4.67b+3.10c/100=28.0855 (3)

Từ 1,2,3 ta có hệ

a+b+c=87

b-a=1
92.23a+4.67b+3.10c=2808.55
giải hệ ta đc:

a=27.97 , b=28.97 , c=30.05 => a=28 , b=29 , c=30
17 tháng 11 2018

Gọi số khối của X1, X2, X3 lần lượt là x, y, z.

Theo đề: \(\overline{X}=\dfrac{92,23.x+4,67.y+3,1.z}{100}\)

\(\Leftrightarrow28,0855=\dfrac{92,23.x+4,67.y+3,1.z}{100}\)(1)

Mặt khác: x + y + z = 87 (2)

Số notron trong X2 nhiều hơn X1 một hạt hay nói cách khác rằng: số khối của X2 nhiều hơn số khối của X1 1 đơn vị (vì số Z của chúng luôn bằng nhau).

\(\Leftrightarrow y-x=1\) (3)

Từ (1), (2), (3) ta được hệ:\(\left\{{}\begin{matrix}28,0855=\dfrac{92,23.x+4,67.y+3,1.z}{100}\\x+y+z=87\\y-x=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=28\\y=29\\z=30\end{matrix}\right.\)

Vậy X có ba đồng vị là 28X1, 29X2, 30X3

3 tháng 8 2019

Ta có phép chia

Bài tập: Chia đa thức một biến đã sắp xếp | Lý thuyết và Bài tập Toán 8 có đáp án

Dựa vào kết quả của phép chia trên, ta có đa thức dư là - 3x - 8.

Chọn đáp án B.

22 tháng 4 2018

Ta có phép chia

Bài tập tổng hợp chương 1 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Dựa vào kết quả của phép chia trên,, ta có đa thức dư là - 3x - 8.

Chọn đáp án B.