Tìm x:
1/1.4 + 1/4.7 + 1/7.10 + ... + 1/x.(x+3)= 667/2002
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{667}{668}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{667}{668}\)
\(1-\frac{1}{x+1}=\frac{667}{668}\)
\(\frac{1}{x+1}=1-\frac{667}{668}\)
\(\frac{1}{x+1}=\frac{1}{668}\)
\(\Rightarrow x+1=668\)
x = 667
Đặt vế trái phương trình là A
\(3A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}\)
\(3A=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+\frac{\left(x+3\right)-x}{x\left(x+3\right)}\)
\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\)
\(3A=1-\frac{1}{x+3}=\frac{x+2}{x+3}\Rightarrow A=\frac{x+2}{3\left(x+3\right)}\)
\(\Rightarrow\frac{x+2}{3\left(x+3\right)}=\frac{667}{2002}\Rightarrow2002\left(x+2\right)=3.667.\left(x+3\right)\)
\(\Leftrightarrow2002x+4004=2001x+6003\Leftrightarrow x=1999\)
đặt VT là A ta có:
\(3A=3\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{x\left(x+3\right)}\right)\)
\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{6}{19}\)
\(3A=1-\frac{1}{x+3}\)
\(A=\left(1-\frac{1}{x+3}\right):3\)
thay A vào VT ta đc:\(\left(1-\frac{1}{x+3}\right):3=\frac{6}{19}\)
\(1-\frac{1}{x+3}=\frac{18}{19}\)
\(\frac{1}{x+3}=\frac{1}{19}\)
=>x+3=19
=>x=16
1/ 1.4+ 1/ 4.7+ 1/ 7.10+....+1/ x.( x+ 3)= 672/ 2017
(3/1.4+3/4.7+3/7.10+...+ 3/x(x+3)).1/3=672/2017
(1/1-1/4+1/4-1/7+1/7-1/10+.....+(x+3)-x/x.(x+3)).1/3=672/2017
(1/1-1/(x+3)).1/3=672/2017
1/1-1/(x+3)= 672/2017:1/3
1/1-1/(x+3) = 2016/2017
1/(x+3)=1/1-2016/2017
1/(x+3)=1/2017
x+3=2017
x= 2017-3
x= 2014
MIK CHẮC CHẮN 100% LÀ ĐÚNG, DẠNG TOÁN NÀY MIK LM NHIỀU R
HOK TỐT
\(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{x\cdot\left(x+3\right)}=\frac{672}{2017}\)
\(\Rightarrow\frac{1}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{x\cdot\left(x+3\right)}\right)=\frac{672}{2017}\)
\(\Rightarrow\frac{1}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{672}{2017}\)
\(\Rightarrow\frac{1}{3}\cdot\left(1-\frac{1}{x+3}\right)=\frac{672}{2017}\Rightarrow1-\frac{1}{x+3}=\frac{672}{2017}:\frac{1}{3}\)
\(\Rightarrow1-\frac{1}{x+3}=\frac{672}{2017}\cdot3=\frac{2016}{2017}\Rightarrow\frac{1}{x+3}=1-\frac{2016}{2017}\)
\(\Rightarrow\frac{1}{x+3}=\frac{2017}{2017}-\frac{2016}{2017}\Rightarrow\frac{1}{x+3}=\frac{1}{2017}\)
\(\Rightarrow x+3=2017\Rightarrow x=2017-3\Rightarrow x=2014\)
\(\Leftrightarrow\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{x\left(x+3\right)}=\dfrac{375}{376}\)
\(\Leftrightarrow1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{375}{376}\)
\(\Leftrightarrow1-\dfrac{1}{x+3}=\dfrac{375}{376}\)
\(\Leftrightarrow\dfrac{1}{x+3}=1-\dfrac{375}{376}=\dfrac{1}{376}\)
\(\Rightarrow x+3=376\)
\(\Rightarrow x=373\)
\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{34}{103}\)
\(\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{34}{103}\)
\(\dfrac{1}{3}.\left(1-\dfrac{1}{x+3}\right)=\dfrac{34}{103}\)
\(1-\dfrac{1}{x+3}=\dfrac{34}{103}:\dfrac{1}{3}=\dfrac{34}{103}.3\)
\(1-\dfrac{1}{x+3}=\dfrac{102}{103}\)
\(\dfrac{1}{x+3}=1-\dfrac{102}{103}=\dfrac{103}{103}-\dfrac{102}{103}\)
\(\dfrac{1}{x+3}=\dfrac{1}{103}\)
\(\Rightarrow x+3=103\)
\(x=103-3\)
\(x=100\)
Vậy x = 100
Đặt \(A=\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{x\left(x+3\right)}=\frac{49}{148}\)
\(3\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{\left(x+3\right)}\right)=3\cdot\frac{49}{148}\)
\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{x\left(x+3\right)}=\frac{147}{148}\)
\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{147}{148}\)
\(1-\frac{1}{x-1}=\frac{147}{148}\)
\(\frac{1}{x-1}=1-\frac{147}{148}\)
\(\frac{1}{x-1}=\frac{1}{148}\)
\(\Rightarrow x-1=148\)
\(\Leftrightarrow x=148+1\)
\(\Leftrightarrow x=149\)
Vậy x=149
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x.\left(x+3\right)}=\frac{49}{148}\)
\(\Rightarrow\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{49}{148}\)
\(\Rightarrow\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{49}{148}\)
\(\Rightarrow\frac{1}{3}.\left(1-\frac{1}{x+3}\right)=\frac{49}{148}\)
\(\Rightarrow1-\frac{1}{x+3}=\frac{49}{148}:\frac{1}{3}\)
\(\Rightarrow1-\frac{1}{x+3}=\frac{147}{148}\)
\(\Rightarrow\frac{1}{x+3}=1-\frac{147}{148}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{148}\)
\(\Rightarrow x+3=148\)
\(\Rightarrow x=148-3\)
\(\Rightarrow x=145\)
Vậy x = 145
_Chúc bạn học tốt_
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x.\left(x+3\right)}=\frac{667}{2002}\)
\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{667}{2002}\)
\(=\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{667}{2002}\)
\(=\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{x+3}\right)=\frac{667}{2002}\)
\(\frac{1}{1}-\frac{1}{x+3}=\frac{667}{2002}:\frac{1}{3}\)
\(\frac{1}{1}-\frac{1}{x+3}=\frac{2001}{2002}\)
\(\frac{1}{x+3}=1-\frac{2001}{2002}\)
\(\frac{1}{x+3}=\frac{1}{2002}\)
\(\frac{1}{x}=\frac{1}{2002-3}\)
\(\frac{1}{x}=\frac{1}{1999}\)
Vậy x = 1999