Cho a, b,c, d là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức ((a+b)/2c)2+((b+c)/2d)2+((c+d)/2a)2+((d+a)/2b)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(x^2-x+1=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
c: \(A=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)
Dấu '=' xảy ra khi x=3
d: \(B=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\le-1\forall x\)
Dấu '=' xảy ra khi x=2
Bài 1:
Ta thấy: $(x+\frac{1}{2})^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow (x+\frac{1}{2})^2+\frac{5}{4}\geq \frac{5}{4}$
Vậy gtnn của biểu thức là $\frac{5}{4}$
Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$
Bài 2:
$x+y-3=0\Rightarrow x+y=3$
\(M=x^2(x+y)-(x+y)x^2-y(x+y)+4y+x+2019\)
\(=-3y+4y+x+2019=x+y+2019=3+2019=2022\)
BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4
MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2
=>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2
=>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2
b,A=y(y+1)(y+2)(y+3)
=>A =[y(y+3)] [(y+1)(y+2)]
=>A=(y2+3y) (y2+3y+2)
Đặt X=y2+3y+1
=>A=(X+1)(X-1)
=>A=X2-1
=>A=(y2+3y+1)2-1
MÀ (y2+3y+1)2>=0 với mọi giá trị của y
=>(y2+3y+1)2-1>=-1
Vậy GTNN của Alà -1
c,B=x3+y3+z3-3xyz
=>B=(x3+y3)+z3-3xyz
=>B=(x+y)3-3xy(x+y)+z3-3xyz
=>B=[(x+y)3+z3]-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)
=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)
Vì \(\left(2x-3\right)^4\ge0\left(\forall x\right)\) (mũ 4 luôn luôn là một số dương)
\(\Rightarrow\left(2x-3\right)^4-2\ge-2\)
Dấu "=" xảy ra \(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)
Vậy GTNN của biểu thức bằng -2 <=> x = 3/2
Với mọi x;y dương ta có:
\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow x^2+y^2+2xy\ge4xy\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\) (1)
Đồng thời cũng suy ra: \(x+y\ge2\sqrt{xy}\) (2)
Gọi biểu thức đã cho là P, áp dụng BĐT (1) ta được:
\(P=\dfrac{\left(a+b\right)^2}{4c^2}+\dfrac{\left(b+c\right)^2}{4d^2}+\dfrac{\left(c+d\right)^2}{4a^2}+\dfrac{\left(d+a\right)^2}{4b^2}\)
\(P\ge\dfrac{4ab}{4c^2}+\dfrac{4bc}{4d^2}+\dfrac{4cd}{4a^2}+\dfrac{4da}{4b^2}=\dfrac{ab}{c^2}+\dfrac{bc}{d^2}+\dfrac{cd}{a^2}+\dfrac{da}{b^2}\)
Áp dụng tiếp BĐT (2):
\(P\ge2\sqrt{\dfrac{ab.bc}{c^2d^2}}+2\sqrt{\dfrac{cd.da}{a^2b^2}}\ge2\left(2\sqrt{\sqrt{\dfrac{ab.bc}{c^2d^2}}.\sqrt{\dfrac{cd.da}{a^2b^2}}}\right)=4\)
\(P_{min}=4\) khi \(a=b=c=d\)