K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

Ta có:

x + x + x = 30   =>x = 30 : 3 = 10

y + y - x = 2.Ta đã biết x = 10 nên y + y = 2 + 10 =12   =>y =12 : 2 =6

z  + z + y =18.Ta đã biết y=6 nên z+z=18-6=12  =>z=12 : 2 = 6

Vậy x +y + z =10+6+6=22

7 tháng 11 2017

\(x+x+x=30\Leftrightarrow x=30:3=10\)

\(y+y-x=2\)Vì \(x=10\)=> \(y=12:2=6\)

\(z+z+y=18\)Vì y = 6 =>Z + Z =18 -6 = 12

\(\Leftrightarrow y=12:2=6\)

\(x+y+z=10+6+6=22\)

25 tháng 9 2021

Đặt x+y−z=a;x−y+z=b;−x+y+z=cx+y−z=a;x−y+z=b;−x+y+z=c thì a + b + c = x + y + z

A=(a+b+c)3−a3−b3−c3A=(a+b+c)3−a3−b3−c3

=(a+b+c−a)[(a+b+c)2+a(a+b+c)+a2]−(b3+c3)=(a+b+c−a)[(a+b+c)2+a(a+b+c)+a2]−(b3+c3)

=(b+c)[a2+b2+c2+2(ab+bc+ca)+(a2+ab+ac)+a2]−(b+c)(b2−bc+c2)=(b+c)[a2+b2+c2+2(ab+bc+ca)+(a2+ab+ac)+a2]−(b+c)(b2−bc+c2)=(b+c)[3a2+b2+c2+3ab+2bc+3ac−b2+bc−c2]=(b+c)[3a2+b2+c2+3ab+2bc+3ac−b2+bc−c2]

=(b+c)(3a2+3ab+3bc+3ca)=(b+c)(3a2+3ab+3bc+3ca)

=(b+c)(3a(a+b)+3c(a+b))=3(a+b)(b+c)(c+a)

19 tháng 7 2017

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{18x-27y}{100}=\frac{27y-24z}{101}=\frac{24z-18x}{102}=\frac{18x-27y+27y-24z+24z-18x}{100+101+102}=\frac{0}{303}=0\)

\(\Rightarrow\frac{27y-24z}{101}=0\Rightarrow27y-24z=0\Rightarrow27y=24z\Rightarrow9y=8z\Rightarrow\frac{y}{8}=\frac{z}{9}\) (1)

\(\frac{24z-18x}{102}=0\Rightarrow24z-18x=0\Rightarrow18x=24z\Rightarrow3x=4z\Rightarrow\frac{x}{4}=\frac{z}{3}\Rightarrow\frac{x}{12}=\frac{z}{9}\) (2)

Từ (1) và (2) suy ra \(\frac{x}{12}=\frac{y}{8}=\frac{z}{9}=\frac{x+y+z}{12+8+9}=\frac{116}{29}=4\)

=> x/12 = 4 => x = 48

y/8 = 4 => y = 32

z/9 = 4 => z = 36

27 tháng 7 2015

nhiều thế. đăng 1 lần 1 - 2 câu thui chứ

16 tháng 12 2018

\(12x^2y-18xy^2-30y^2=6y\left(2x^2-3xy-5y\right)\)

\(d,5\left(x-y\right)-y\left(x-y\right)=\left(5-y\right)\left(x-y\right)\)

d)5.(x-y)-y(x-y)

=(x-y)(5-y)

e) y.(x-z)+7(z-x)

=y.(x-z)-7(x-z)

=(x-z)(y-7)

30 tháng 12 2017

a)

Ta có: \(9x=5y=15z\Rightarrow\dfrac{9x}{45}=\dfrac{5y}{45}=\dfrac{15z}{45}\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{z}{3}\Rightarrow\dfrac{-x}{-5}=\dfrac{y}{9}=\dfrac{z}{3}_{\left(1\right)}\)

\(-x+y-z=11_{\left(2\right)}.\)

Từ \(_{\left(1\right)}\)\(_{\left(2\right)}\), kết hợp tính chất dãy tỉ só bằng nhau có:

\(\dfrac{-x}{-5}=\dfrac{y}{9}=\dfrac{z}{3}=\dfrac{-x+y-z}{-5+9-3}=\dfrac{11}{1}=11.\)

Từ đó: \(\left\{{}\begin{matrix}\dfrac{-x}{-5}=11\Rightarrow-x=-55\Rightarrow x=55.\\\dfrac{y}{9}=11\Rightarrow y=99.\\\dfrac{z}{3}=11\Rightarrow z=33.\end{matrix}\right.\)

Vậy.....

b); c); d); e) làm tương tự.