Tìm x,y,z thỏa mãn phương trình sau :
x2 + 4y2 + z2 + 4x + 4y + 8z + 22 = 0
A/c nào giúp em với ạ !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x,y,z thỏa mãn phương trình sau :
x2 + 4y2 + z2 + 4x + 4y + 8z + 22 = 0
A/c nào giúp em với ạ !!!
\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{49}{16}\)
\(M_{min}=\dfrac{49}{16}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{\sqrt{7}};\dfrac{2}{\sqrt{14}};\dfrac{2}{\sqrt{7}}\right)\)
\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{7}{4}\)
\(M_{min}=\dfrac{7}{4}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{\sqrt{2}};1\right)\)
a) \(x^2+xy+y^2+1\)
\(=x^2+xy+\dfrac{y^2}{4}-\dfrac{y^2}{4}+y^2+1\)
\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)
mà \(\left\{{}\begin{matrix}\left(x+\dfrac{y}{2}\right)^2\ge0,\forall x;y\\\dfrac{3y^2}{4}\ge0,\forall x;y\end{matrix}\right.\)
\(\Rightarrow\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0,\forall x;y\)
\(\Rightarrow dpcm\)
b) \(...=x^2-2x+1+4\left(y^2+2y+1\right)+z^2-6z+9+1\)
\(=\left(x-1\right)^2+4\left(y^{ }+1\right)^2+\left(z-3\right)^2+1>0,\forall x.y\)
\(\Rightarrow dpcm\)
Ta có:
\(x^2+4y^2+z^2-4x+4y-8z+24=0\)
\(\Leftrightarrow x^2-4x+4+4y^2+4y+1+z^2-8z+16+3=0\)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(4y^2+4y+1\right)+\left(z^2-8z+16\right)+3=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2+3=0\)
Mà: \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(2y+1\right)^2\ge0\\\left(z-4\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2+3\ge3\ne0\)
Vậy không có số thực x, y, z nào thỏa mãn đẳng thức.
VT= x2+4y2+z2-4x+4y-8z+32
= (x2-4x+4)+(4y2+4y+1)+(z2-8z+16)+11
= (x-2)2+(2y+1)2+(z-4)2+11>0
Vậy không có x,y,x thoã mã đẳng thức
\(14,P=x^2+xy+y^2-3x-3y+3\\ P=\left(x^2+xy+\dfrac{1}{4}y^2\right)-3\left(x+\dfrac{1}{2}y\right)+\dfrac{3}{4}y^2-\dfrac{3}{2}y+3\\ P=\left(x+\dfrac{1}{2}y\right)^2-3\left(x+\dfrac{1}{2}y\right)+\dfrac{9}{4}+\dfrac{3}{4}\left(y^2-2y+1\right)\\ P=\left(x+\dfrac{1}{2}y-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(y-1\right)^2\ge0\)