cho A= 2+2^2 +2^3+....+2^100
chứng minh rằng A chia hết cho 3 và 5 . tìm chữ số tận cùng của A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chia hết cho 3
a) A = 2 + 22 + 23 +....... + 2100
A = ( 2+ 22) + (23 + 24) + ........ (299+2100)
A = 2(1+2) + 23(1+2) + ........+ 299(1+2)
A= 2. 3 + 23 . 3 + ........ + 299. 3
= 3 . ( 2 + 23 + .........+ 299)
Vì 3 chia hết cho 3 => 3. ( 2 + 23 + ........+299) chia hết cho 3 hay A chia hết cho 3
Chia hết cho 15 cũng tương tự như vậy nha bn!
Ghép 4 số rồi tính!
CHÚC BN HOK GIỎI!
a) Tổng A có số số hạng là:
`(101-1):1+1=101`(số hạng)
b) `A=2+2^3 +2^5 +...+2^101`
`2^2 A=2^3 +2^5 +2^7 +...+2^103`
`4A-A=2^3 +2^5 +2^7 +...+2^103 -2-2^3 -2^5 -...-2^101`
`3A=2^103 -2`
`=>3A+2=2^103 -2+2=2^103`
c) `A=2+2^3 +2^5 +...+2^101`
`A=2(1+2^2 +2^4 +...+2^100)⋮2`
`A=2+2^3 +2^5 +...+2^101`
`A=2(1+2^2 +2^4)+...+2^97 .(1+2^2 +2^4)`
`A=2.21+...+2^97 .21`
`A=21(2+...+2^97)⋮21`
\(S=5+5^2+5^3+...+5^{2008}\)
a) Ta có: \(126=5^0+5^3\)
\(5+5^4=5\left(5^0+5^3\right)\text{ }⋮\text{ }126,\text{ }5^2+5^5=5^2\left(5^0+5^3\right)\text{ }⋮\text{ }126,...\)
Áp dụng lần lượt như thế, ta có:
\(\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+\left(5^7+5^{10}\right)+\left(5^8+5^{11}\right)+\left(5^9+5^{12}\right)+...+\left(5^{2005}+5^{2008}\right)\text{ }⋮\text{ }126\)
Còn thiếu \(5^{2006}+5^{2007}\), ta có: \(5^{2006}+5^{2007}=5^{2006}\left(5^0+5^1\right)=5^{2006}\cdot6=2\cdot3\cdot5^{2006}\)
Trong khi đó: \(126=2\cdot3^2\cdot7\)
Ta dễ thấy \(5^{2006}+5^{2007}\) không chia hết cho \(3\cdot7=21\), nên \(5^{2006}+5^{2007}\) không chia hết cho 126.
Từ đó suy ra S không chia hết cho 126.
b) Tất cả các số hạng đều có chữ số tận cùng là 5.
Biểu thức S có \(\left(2008-1\right)+1=2008\) số hạng cộng lại với nhau.
=> S có chữ số tận cùng là 0 (vì số lượng các số hạng cộng lại với nhau là số chẵn)
Bài 3:
a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)
Bài 1:
Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
Vậy: A có chữ số tận cùng là 0
Bài 2:
Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)
\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)
\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)
mà \(8\left(125a+12b+c\right)⋮8\)
và \(2c+4b+d⋮8\)
nên \(abcd⋮8\)(đpcm)
b)
B=5+52+...+596
Do 5 mũ bao niêu tận cùng là 5
=>tận cùng của B là chữ số tận cùng của tổng các chữ số tận cùng của các số hạng của B
Số số hạng của B là:96-1+1=96(số hạng)
=>Tổng các chữ số tận cùng của các số hạng của B là:5x96=480
=>chữ số tận cùng của B là 0
Vậy chữ số tận cùng của B là 0
A = (2+2^2)+(2^3+2^4)+....+(2^99+2^100)
= 2.(1+2)+2^3.(1+2)+....+2^99.(1+2)
= 2.3+2^3.3+....+2^99.3
= 3.(2+2^3+....+2^99) chia hết cho 3
A = (2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^97+2^98+2^99+2^100)
= 2.(1+2+2^2+2^3)+2^5.(1+2+2^2+2^3)+....+2^97.(1+2+2^2+2^3)
= 2.15+2^5.15+....+2^97
= 3.5.(2+2^5+....+2^97) chia hết cho 5
=> ĐPCM
k mk nha
kb vs mik ko quân