Tìm GTLN của N
Biết N=|x-1004|+|x+1003|
Làm ơn ai đó giải bài này đi thank nhiều ạk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
A = l x -1004l - lx+1003l
\(\Rightarrow\) A \(\ge\) l x-1004 - x-1003l = l(-1003)+(-1004)l = l-2007l = 2007
Dấu = xảy ra khi (x-1004).(x-1003) \(\ge0\)
\(\Rightarrow x-1004\ge0;x+1003\ge0\) hoặc \(x-1004\le0;x+1003\le0\)
\(\Rightarrow x\ge1004\) hoặc \(x\le-1003\)
Vậ GTLN của A là 2007 khi \(x\ge1004\) hoặc \(x\le1003\)
+)Xét x<−1003x<−1003 suy ra
{x+1003<0⇒|x+1003|=−(x+1003)=−x−1003x−1004<0⇒|x−1004|=−(x−1004)=−x+1004{x+1003<0⇒|x+1003|=−(x+1003)=−x−1003x−1004<0⇒|x−1004|=−(x−1004)=−x+1004
Khi đó A=(−x+1004)−(−x−1003)=2007A=(−x+1004)−(−x−1003)=2007
+)Xét −1003≤x<1004−1003≤x<1004 suy ra
{x≥−1003⇒x+1003≥0⇒|x+1003|=x+1003x<1004⇒x−1004<0⇒|x−1004|=−(x−1004)=−x+1004{x≥−1003⇒x+1003≥0⇒|x+1003|=x+1003x<1004⇒x−1004<0⇒|x−1004|=−(x−1004)=−x+1004
Khi đó A=(−x+1004)−(x+1003)=1−2xA=(−x+1004)−(x+1003)=1−2x
+)Xét x≥1004x≥1004 suy ra
{x−1004≥0⇒|x−1004|=x−1004x+1003≥0⇒|x+1003|=x+1003{x−1004≥0⇒|x−1004|=x−1004x+1003≥0⇒|x+1003|=x+1003
Khi đó A=(x−1004)−(x+1003)=−2007A=(x−1004)−(x+1003)=−2007
Ta thấy: Với x<−1003x<−1003 thì A đạt giá trị lớn nhất là 2007
Vậy MaxA=2007MaxA=2007 khi x<−1003
+)Xét x<−1003x<−1003 suy ra
{x+1003<0⇒|x+1003|=−(x+1003)=−x−1003x−1004<0⇒|x−1004|=−(x−1004)=−x+1004{x+1003<0⇒|x+1003|=−(x+1003)=−x−1003x−1004<0⇒|x−1004|=−(x−1004)=−x+1004
Khi đó A=(−x+1004)−(−x−1003)=2007A=(−x+1004)−(−x−1003)=2007
+)Xét −1003≤x<1004−1003≤x<1004 suy ra
{x≥−1003⇒x+1003≥0⇒|x+1003|=x+1003x<1004⇒x−1004<0⇒|x−1004|=−(x−1004)=−x+1004{x≥−1003⇒x+1003≥0⇒|x+1003|=x+1003x<1004⇒x−1004<0⇒|x−1004|=−(x−1004)=−x+1004
Khi đó A=(−x+1004)−(x+1003)=1−2xA=(−x+1004)−(x+1003)=1−2x
+)Xét x≥1004x≥1004 suy ra
{x−1004≥0⇒|x−1004|=x−1004x+1003≥0⇒|x+1003|=x+1003{x−1004≥0⇒|x−1004|=x−1004x+1003≥0⇒|x+1003|=x+1003
Khi đó A=(x−1004)−(x+1003)=−2007A=(x−1004)−(x+1003)=−2007
Ta thấy: Với x<−1003x<−1003 thì A đạt giá trị lớn nhất là 2007
Vậy MaxA=2007MaxA=2007 khi x<−1003
~ Học tốt ~
Ta chứng minh: \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)
\(\Leftrightarrow\left(\left|a\right|-\left|b\right|\right)^2\le\left(\left|a-b\right|\right)^2\)
\(\Leftrightarrow a^2-2\left|ab\right|+b^2\le a^2-2ab+b^2\)
\(\Leftrightarrow-\left|ab\right|\le-ab\)
\(\Leftrightarrow\left|ab\right|\ge ab\)(đúng)
Dấu "=" khi ab > 0
Áp dụng:
\(A=\left|x-1004\right|-\left|x+1003\right|\)
\(\le\left|x-1004-x-1003\right|=2007\)
Dấu "=" khi \(\orbr{\begin{cases}x\ge1004\\x\le-1003\end{cases}}\)
\(A=\left|x-1004\right|+\left|x-1003\right|\le\left|x-1004-x+1003\right|=1\)
Dấu "=" xảy ra khi: \(x\ge1004\)
\(N=\left|x-1004\right|+\left|x+1003\right|=\left|1004-x\right|+\left|x+1003\right|\le\left|1004-x+x+1003\right|=2007\)
Dấu "=" xảy ra khi \(\left(1004-x\right)\left(x+1003\right)\ge0\Leftrightarrow-1003\le x\le1004\)
Vậy MaxN = 2007 khi \(-1003\le x\le2004\)
N = |1004-x|+|x+1003| >= |1004-x+x+1003| = 2007
Dấu "=" xảy ra <=> (1004-x).(x+1003) >= 0
<=> -1003 <= x <= 1004
Vậy Min N = 2007 <=> -1003 <= x <= 1004