K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2017

Đặt A là tổng của 2^1 + 2^2 + 2^3 +.....+ 2^88 +2^89 + 2^90

= (2^1 + 2^2 + 2^3) + ....+ (2^88 + 2^89 +2^90)

= (2^1.1+2^1.2+2^1.2^2) +....+(2^88.1+2^88.2+2^88.2^2)

= 2^1.(1+2+2^2) +.....+2^88.(1+2+2^2)

= 2^1.7 +....+2^88.7

= 7.(2^1+....+2^88)

=> A chia hết cho 7

11 tháng 12 2023

Số số hạng của A:

90 - 1 + 1 = 90 (số)

Do 90 chia hết cho 3 nên có thể nhóm thành nhóm 3 số hạng

Ta có:

A = 2¹ + 2² + 2³ + ... + 2⁹⁰

= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁸⁸ + 2⁸⁹ + 2⁹⁰)

= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2⁸⁸.(1 + 2 + 2²)

= 2.7 + 2⁴.7 + ... + 2⁸⁸.7

= 7.(2 + 2⁴ + ... + 2⁸⁸) ⋮ 7

Vậy A ⋮ 7

b) A = 2¹ + 2² + 2³ + ... + 2⁹⁰

⇒ 2A = 2² + 2³ + 2⁴ + ... + 2⁹¹

⇒ A = 2A - A = (2² + 2³ + 2⁴ + ... + 2⁹¹) - (2 + 2² + 2³ + ... + 2⁹⁰)

= 2⁹¹ - 2

23 tháng 1 2017

Số số hạng:

(290-21):1+1=270( số hạng)

Tổng A:(290+21) x 270:2=41985

Ta có:41986:7 hết nén A chia hết cho 7.

3 tháng 9 2023

\(A=2^1+2^2+2^3+...+2^{2016}\)

\(\Rightarrow A=2\left(1+2^1+2^2\right)+2^4\left(1+2^1+2^2\right)...+2^{2014}\left(1+2^1+2^2\right)\)

\(\Rightarrow A=2.7+2^4.7...+2^{2014}.7\)

\(\Rightarrow A=7\left(2+2^4...+2^{2014}\right)⋮7\)

\(\Rightarrow dpcm\)

3 tháng 10 2021

giúp mik với bucminh

3 tháng 10 2021

\(A=2^0+2^1+2^2+...+2^{59}\)

\(=2^0\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{57}\left(1+2+2^2\right)\)

\(=2^0.7+2^3.7+...+2^{57}.7\)

\(=7\left(2^0+2^3+...+2^{57}\right)⋮7\)

 

22 tháng 10 2023

a) P = 1 + 3 + 3² + ... + 3¹⁰¹

= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)

= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)

= 13 + 3³.13 + ... + 3⁹⁹.13

= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13

Vậy P ⋮ 13

b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰

= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)

= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)

= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21

= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21

Vậy B ⋮ 21

c) A = 2 + 2² + 2³ + ... + 2²⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + ... + 2¹⁶.30

= 30.(1 + 2⁴ + ... + 2¹⁶)

= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5

Vậy A ⋮ 5

d) A = 1 + 4 + 4² + ... + 4⁹⁸

= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)

= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)

= 21 + 4³.21 + ... + 4⁹⁷.21

= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21

Vậy A ⋮ 21

e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1

= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)

= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105

= 11⁵.16105 + 16105

= 16105.(11⁵ + 1)

= 5.3221.(11⁵ + 1) ⋮ 5

Vậy A ⋮ 5

9 tháng 8 2019

\(A=cos^21+coss^22+...+cos^288+cos^289-\frac{1}{2}\)

\(A=1-sin^21+1-sin^22+...+1-sin^244+cos^245+cos^246+...+cos^289-\frac{1}{2}\)

\(A=1\cdot44+cos^245-\frac{1}{2}\)

\(A=44\)

B=\(sin^21+sin^22+...+sin^289-\frac{1}{2}\)

\(B=1-cos^21+1-cos^22+...+sin^245+sin^246+....+sin^289-\frac{1}{2}\)

\(B=1\cdot44+sin^245-\frac{1}{2}=44\)

9 tháng 8 2019

\(C=tan^21\cdot tan^22\cdot...\cdot tan^288+tan^289\)

\(C=tan^21\cdot\left(tan^22\cdot tan^288\right)\cdot...\cdot\left(tan^244\cdot tan^246\right)\cdot tan^245+tan^289\)

\(C=tan^21+tan^289\approx3282\)

D = \(\left(tan^21:cot^289\right)+...+\left(tan^244:tan^246\right)+tan^245\)

\(D=\left(tan^21\cdot tan^289\right)+...+\left(tan^244\cdot tan^246\right)+tan^245\)

\(D=1+...+1+1\)

ta thấy từ 1 đến 89 có 89 số hạng, trong đó có 44 cặp.

vậy D = 45

Ta có: \(A=2+2^2+2^3+2^4+...+2^{99}+91\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{97}+2^{98}+2^{99}\right)+91\)

\(=2\cdot\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)+91\)

\(=7\cdot\left(1+2^4+...+2^{97}\right)+7\cdot13\)

\(=7\cdot\left(1+2^4+...+2^{97}+13\right)⋮7\)(đpcm)

Ta có: \(A=2+2^2+2^3+2^4+...+2^{99}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{97}+2^{98}+2^{99}\right)\)

\(=2\cdot\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)

\(=\left(1+2+2^2\right)\cdot\left(2+2^4+...+2^{97}\right)\)

\(=7\cdot\left(2+2^4+...+2^{97}\right)⋮7\)(đpcm)