K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 giờ trước (9:52)

 Bài 3:

a: \(2^x+2^{x+1}+...+2^{x+100}=2^{101}-1\)

=>\(2^x\left(1+2+...+2^{100}\right)=2^{101}-1\)

Đặt \(A=1+2+...+2^{100}\)

=>\(2A=2+2^2+...+2^{101}\)

=>\(2A-A=2+2^2+...+2^{101}-1-2-...-2^{100}\)

=>\(A=2^{101}-1\)

\(2^x\left(1+2+...+2^{100}\right)=2^{101}-1\)

=>\(2^x\left(2^{101}-1\right)=2^{101}-1\)

=>\(2^x=1=2^0\)

=>x=0

b: p là số nguyên tố lớn hơn 3 nên \(\left\{{}\begin{matrix}p⋮̸2\\p⋮̸3\end{matrix}\right.\)

p không chia hết cho 3 nên p=3k+1 hoặc p=3k+2

TH3: p=3k+1

\(\left(p-1\right)\left(p+1\right)\)

\(=\left(3k+1-1\right)\left(3k+1+1\right)\)

\(=3k\left(3k+2\right)⋮3\)(3)

TH2: p=3k+2

\(\left(p-1\right)\left(p+1\right)=\left(3k+2-1\right)\left(3k+2+1\right)\)

\(=\left(3k+1\right)\left(3k+3\right)=3\left(k+1\right)\left(3k+1\right)⋮3\)(2)

Từ (2),(3) suy ra \(\left(p-1\right)\left(p+1\right)⋮3\)

p không chia hết cho 2 nên p=2k+1

\(\left(p-1\right)\left(p+1\right)=\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=2k\left(2k+2\right)=4k\left(k+1\right)\)

Vì k;k+1 là hai số nguyên liên tiếp

nên \(k\left(k+1\right)⋮2\)

=>\(4k\left(k+1\right)⋮4\cdot2\)

=>\(4k\left(k+1\right)⋮8\)

=>\(\left(p-1\right)\left(p+1\right)⋮8\)

mà \(\left(p-1\right)\left(p+1\right)⋮3\)

và ƯCLN(3;8)=1

nên \(\left(p-1\right)\left(p+1\right)⋮3\cdot8=24\)

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Số lần so sánh giữa các phần tử: Trong thuật toán sắp xếp chọn, số lần so sánh giữa các phần tử là cố định, không phụ thuộc vào dữ liệu đầu vào. Cụ thể, số lần so sánh trong thuật toán sắp xếp chọn là \(\dfrac{n\left(n-1\right)}{2}\), với n là số phần tử trong mảng hoặc danh sách.

Số lần hoán đổi giữa các phần tử: Trong thuật toán sắp xếp chọn, số lần hoán đổi giữa các phần tử có thể đạt đến tối đa n-1 lần, với n là số phần tử trong mảng hoặc danh sách.

Vậy độ phức tạp thời gian của thuật toán sắp xếp chọn là O(n2), hay \(\dfrac{n\left(n-1\right)}{2}\) lần so sánh và tối đa n-1 lần hoán đổi giữa các phần tử.

20 tháng 12 2021

tham khảo 

/Em không đồng ý với ý kiến của Mai.Vì như vậy sẽ là gian lận trong học tập sẽ không giúp gì được cho mik mà làm mik ngày càng ỷ lại,không tốt cho tương lai của bản thân mik.

20 tháng 12 2021

Em không đồng ý với ý kiến của Mai,vì Mai xui Hoa không cần suy nghĩ mà chỉ cần chép trong vở bài tập toán,nếu Lan chép sẽ không hiệu  quả trong học tập.

28 tháng 6 2017

Giải phương trình,4căn2x + 10căn8x - 9căn18x + 20 = -10,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

k mình nha

28 tháng 6 2017

lầy thật

11 tháng 7 2017

Giải hệ phương trình,(x + 2)(x - y + 1) = 2 và 3x^2 - 3xy + x + 2y = 4,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

AI XEM RỒI NHỚ CHẤM ĐIỂM

11 tháng 7 2017

Trình bày xấu chưa từng thấy

thưa thầy em mới biết thêm được phương pháp dùng vecto trượt giải toán điện xoay chiều ( hay nói cách khác là nối vecto)làm một số dạng bài tập có sử dụng phương pháp này, em làm thêm cách giản đồ vecto thông thường để so sánh và rút ra 1 số vấn đề:- cả 2 cách đều ra kết quả như nhau chỉ khác về hình vẽ nên tính toán sẽ khác- dùng vecto trượt nhanh hơn đôi chút, phần hình và tính...
Đọc tiếp

thưa thầy em mới biết thêm được phương pháp dùng vecto trượt giải toán điện xoay chiều ( hay nói cách khác là nối vecto)

làm một số dạng bài tập có sử dụng phương pháp này, em làm thêm cách giản đồ vecto thông thường để so sánh và rút ra 1 số vấn đề:

- cả 2 cách đều ra kết quả như nhau chỉ khác về hình vẽ nên tính toán sẽ khác

- dùng vecto trượt nhanh hơn đôi chút, phần hình và tính toán dễ dàng hơn ( trong 1 số bài phức tạp)

- tuy nhiên đối với một số bài có tính chặt chẽ  thì dùng vecto trượt có thể dẫn đến kết quả sai (do chưa biết được Zl và Zc cái nào lớn hơn để vẽ)

vậy em muốn hỏi thầy là dạng bài tập nào dùng giản đồ thông thường cũng ra được kết quả đúng không ạ?

và có dấu hiệu nào để biết là nên dùng phương pháp vecto trượt hay dùng giản đồ thông thường không ạ? đọc vào đề bài em thấy hơi phân vân không biết nên dùng 

cách nào hợp lí nhất. mong thầy chỉ giúp em ạ.

2
9 tháng 10 2015

Điện xoay chiều thú vị ở chỗ đó, chúng ta có thể dùng biến đổi đại số, dùng giản đồ véc tơ (tạm gọi là véc tơ thường - véc tơ buộc và véc tơ trượt), ngoài ra còn có thể dùng số phức để giải. Tùy từng bài toán và tùy từng kinh nghiệm của mỗi người thì sẽ biết nên làm theo cách nào cho hợp lí. Em hãy cứ làm nhiều bài tập điện xoay chiều thì em sẽ nhận ra điều đó.

Dùng giản đồ véc tơ thường thì hầu như dạng bài tập nào cũng giải được.

Còn véc tơ trượt là một biến thể của véc tơ thường (dựa vào tính chất cộng véc tơ trong toán học), làm cho hình vẽ đỡ rối hơn.

Còn nên dùng theo cách nào thì như mình nói tùy từng bài toán và kinh nghiệm của mỗi người. Kinh nghiệm của mình là những bài toán mà cho mối liên hệ các điện áp chéo nhau (VD: URL, URC,...) thì dùng véc tơ thường, trường hợp còn lại thì dùng véc tơ trượt.

9 tháng 10 2015

vâng em cảm ơn thầy ạ.

28 tháng 4 2022

Thời gian trung bình giải một bài tập Toán của lớp `7A` là:

 `\overline{X} = [ 5 . 4 + 6 . 3 + 7 . 12 + 8 . 10 + 9 . 8 + 10 . 5 ] / [ 4 + 3 + 12 + 10 + 8 + 5 ]`

`=> \overline{X} ~~ 7,7`