Cho A=1+2+2 mũ 2+2 mũ 3+...+2 mũ 2017 và B=2 mũ 2018
So sánh A và B
Giải thích cụ thể giúp mình nhé!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2+2^2+...+2^{2017}\)
\(\Rightarrow A=\dfrac{2^{2017+1}-1}{2-1}\)
\(\Rightarrow A=2^{2018}-1\)
mà \(B=2^{2018}\)
\(\Rightarrow A-B=2^{2018}-1-2^{2018}\)
\(\Rightarrow A-B=-1\)
\(2A=2+2^2+2^3+...+2^{2018}\)
\(\Rightarrow A=2A-A=2^{2018}-1\)
\(\Rightarrow A-B=2^{2018}-1-2^{2018}=-1\)
A=1+2+22+23+...+22017 (1)
2A=2+22+23+24+...+22018 (2)
Lấy (2) - (1) ta có:
2A - A=(2+22+23+24+...+22018)-(1+2+22+23+...+22017)
A=2+22+23+24+...+22018-1-2-22-23-...-22017
A=22018-1
Mà B=22018-1 =>A=B
b) ta có: B=20172
B=(2016+1).2017=2016.2017+2017
A=2016.2018
A=2016.(2017+1)=2016.2017+2016
Vì 2016<2017=>A<B
mình nhé
a,5mũ 36=(5mũ3)mũ12=125 mũ12
11^24=(11^2)12=121^12
vì 121<125 nên 5^36>11^24
Ta có: \(A=\frac{2^{2017}+2}{2^{2017}+3}=1-\frac{1}{2^{2017}+3}\)
\(B=\frac{2^{2017}+1}{2^{2017}+2}=1-\frac{1}{2^{2017}+2}\)
Vì \(\frac{1}{2^{2017}+3}< \frac{1}{2^{2017}+2}\) nên \(1-\frac{1}{2^{2017}+3}>1-\frac{1}{2^{2017}+2}\)
hay A > B
Ta có : \(A=1+2+2^2+...+2^{2017}\)(1)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2018}\)(2)
Lấy (2) trừ (1) ta có :
\(\Rightarrow A=2^{2018}-1\)
\(\Rightarrow A< B\). Vì \(B=2^{2018}\)
A = 1+2+22+23+.....+22017
2A = 2(1+2+22+23+.....+22017) = 2+22+23+24+.....+22018
2A - A = 2+22+23+24+.....+22018- (1+2+22+23+.....+22017)
=> A = 2+22+23+24+.....+22018-1-2-22-23-.....-22017
A =22018-1 < 22018
Vậy A < B