các bạn ơi giúp mk với !!!
Tìm số tự nhiên biết: -2+4+(-6)+8+(-10)+...+x =2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-7)+(x-8)+(x-9)+...+(x-93)=1392
( x + x + x + ... + x ) - ( 7 + 8 + 9 + ... + 93 ) = 1392
87x - ( 7 + 8 + 9 + ... + 93 )
số số hạng của vế trong ngoặc là :
( 93 - 7 ) : 1 + 1 = 87 ( số )
tổng của dãy trong ngoặc là :
( 93 + 7 ) . 87 : 2 = 4350
Thay vào ta được :
87x - 4350 = 1392
87x = 1392 + 4350
87x = 5742
x = 5742 : 87
x = 66
\(\left(x-7\right)+\left(x-8\right)+\left(x-9\right)+...+\left(x-93\right)=1392\)
=) \(x-7+x-8+x-9+...+x-93=1392\)
=) \(\left(x+x+x+...+x\right)-\left(7+8+9+...+93\right)=1392\)
_______________________
Có \(\left(93-7\right):1+1=87\)số x
=) \(87x+\left[\left(93+7\right).\left(93-7\right):1+1\right]:2=1392\)
=) \(87x+4350=1392\)
=) \(87x=1392-4350=-2958\)
=) \(x=\left(-2958\right):87=-34\)
Bài 1 : \(\frac{2}{3}< \left[\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}\right]:5\times x< \frac{5}{6}\)
=> \(\frac{2}{3}< \left[\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{1}{24}\right]:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \left[\frac{1}{6}+\frac{1}{24}+\frac{2}{15}+\frac{3}{40}\right]:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{5}{12}:5\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{1}{12}\cdot x< \frac{5}{6}\)
=> \(\frac{2}{3}< \frac{x}{12}< \frac{5}{6}\)
=> \(\frac{8}{12}< \frac{x}{12}< \frac{10}{12}\)
=> x = 9
Bài 2 : \(\frac{\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right]}{x}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)
=> \(\frac{\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}\right]}{x}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{11\cdot12}\)
=> \(\frac{\left[1-\frac{1}{16}\right]}{x}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{11}-\frac{1}{12}\)
=> \(\frac{15}{\frac{16}{x}}=1-\frac{1}{12}\)
=> \(\frac{15}{\frac{16}{x}}=\frac{11}{12}\)
=> \(\frac{15}{16}:x=\frac{11}{12}\)
=> \(x=\frac{45}{44}\)
Bài 3 : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\times(x+1):2}=\frac{399}{400}\)
=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\times(x+1)}=\frac{399}{400}\)
=> \(2\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\times(x+1)}\right]=\frac{399}{400}\)
=> \(2\left[\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\times(x+1)}\right]=\frac{399}{400}\)
=> \(\left[\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right]=\frac{399}{800}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{399}{800}\)
=> \(\frac{1}{x+1}=\frac{1}{800}\)
=> x = 799
Bài 2 :
\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right):x=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\) (*)
Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}=\frac{8+4+2+1}{16}=\frac{15}{16}\) (1)
Lại có : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{11.12}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\)
\(=1\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{11}+\frac{1}{11}\right)-\frac{1}{12}\)
\(=1-\frac{1}{12}=\frac{11}{12}\) (2)
Thay (1) và (2) vào biểu thức (*) ta được :
\(\frac{15}{16}:x=\frac{11}{12}\)
\(\Leftrightarrow x=\frac{15}{16}:\frac{11}{12}\)
\(\Leftrightarrow x=\frac{45}{44}\)
Vậy : \(x=\frac{45}{44}\)
112 chia hết cho x
140 chia hết cho x
=> ƯC(112;140) = x (10<x<20)
112 = 24 x 7
140 = 7 x 22 x 5
=> x = 7.2 = 14 (thoản mãn yêu cầu đề bài)
112 \(⋮\)x ; 140 \(⋮\)x => x \(\in\)ƯC(112; 140)
Ta có: 112 = 24.7
140 = 22 . 5 . 7
=> ƯCLN(112; 140) = 22.7 = 28
=> ƯC(112; 140) = Ư(28) = {1; 2; 4; 7; 14; 28}
Do 10 < x < 20 => x = 14
b)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2007}{2009}\)
\(=\frac{1}{1.3}+\frac{1}{2.3}+\frac{1}{2.5}+...+\frac{2}{x.\left(x+1\right)}=\frac{2007}{2009}\)
\(=\frac{1}{2}.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2007}{2009}\)
\(=\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}:\frac{1}{2}\)
\(=\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)
\(=\frac{1}{x-1}=\frac{1}{2009}\Leftrightarrow x+1=2009\)
\(\Rightarrow x=2009-1=2008\)
Bạn Phúc Trần Tấn bạn có biết làm phần a ko?Giúp mk với ạ!Mai mk cần rùi
Bài 2:
Ta có: \(16x+40=10\cdot3^2+5\left(1+2+3\right)\)
\(\Leftrightarrow16x+40=90+30\)
\(\Leftrightarrow16x=80\)
hay x=5