chứng minh rằng với mọi số nguyên n thì :
(2n-1)3-2(n-1)chia hết cho 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(2n-1\right)^3-\left(2n-1\right)\)
\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)
\(=\left(2n-1\right)\left(2n-1+1\right)\left(2n-1-1\right)\)
\(=\left(2n-1\right).2n.\left(2n-2\right)\)
\(=4n\left(2n-1\right)\left(n-1\right)\)
Vì \(4n\left(2n-1\right)\left(n-1\right)\) chia hết cho 4 ( Do chứa thừa số 4 )
Đồng thời \(4n\left(2n-1\right)\left(n-1\right)\) chia hết cho 2 ( Do n(n-1) là tích của hai số tự nhiên liên tiếp
\(\Rightarrow4n\left(2n-1\right)\left(n-1\right)\) chia hết cho 8
(2n-1)^3-(2n-1)
=(2n-1)((2n-1)2-1)
=(2n-1)(2n-1+1)(2n-1-1)
=2n(2n-1)(2n-2)
=4n(2n-1)(n-1)
=> 4n(2n-1)(n-1) chia hết cho 4 (1)
mà (2n-1)(n-1)=(n+n-1)(n-1)
=> (2n1)(n-1) chia hết cho 2 (2)
Từ (1) và (2), ta suy ra (2n-1)^3 - (2n-1) chia hết cho 8
(2n-1)^3-(2n-1)
=(2n-1)((2n-1)2-1)
=(2n-1)(2n-1+1)(2n-1-1)
=2n(2n-1)(2n-2)
=4n(2n-1)(n-1)
=> 4n(2n-1)(n-1) chia hết cho 4 (1)
mà (2n-1)(n-1)=(n+n-1)(n-1)
=> (2n1)(n-1) chia hết cho 2 (2)
Từ (1) và (2), ta suy ra (2n-1)^3 - (2n-1) chia hết cho 8
\(n\left(2n-3\right)-2n\left(n+1\right)=2n^2-3n-2n^2-2n=-5n\)
mà \(-5n⋮5\left(n\in Z\right)\)
⇒đpcm
\(n\left(2n-3\right)-2n\left(n+1\right)=\)
\(=2n^2-3n-2n^2-2n=-5n⋮5\)
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
https://goo.gl/BjYiDy
sửa đề : \(\left(2n-1\right)^3-\left(2n-1\right)\)
đề đó mình nghĩ vậy