Tìm các số tự nhiên x sao cho x+11 chia hết cho x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x+11 = x +1 +10 chia hết cho x+1
=> 10 chia hết cho x+1
=> x +1 thuộc Ư(10) ={1;2;5;10}
=> x thuộc {0;1;4;9}
1) 3n ⋮ 2n - 5
=> 2(3n) - 3(2n - 5) ⋮ 2n - 5
=> 6n - 6n + 15 ⋮ 2n - 5
=> 15 ⋮ 2n - 5
=> 2n-5 ϵ Ư(15)
Ư(15) = {1;-1;3;-3;5;-5;15;-15}
=> n={3;2;4 ;1;5;0;10;-5
1) \(2⋮x\Rightarrow x\in U\left(2\right)=\left\{1;2\right\}\left(x\inℕ\right)\)
2) \(2⋮\left(x+1\right)\Rightarrow x+1\in U\left(2\right)=\left\{1;2\right\}\Rightarrow x\in\left\{0;1\right\}\left(x\inℕ\right)\)
3) \(2⋮\left(x+2\right)\Rightarrow x+2\in U\left(2\right)=\left\{1;2\right\}\Rightarrow x\in\left\{-1;0\right\}\Rightarrow x\in\left\{0\right\}\left(x\inℕ\right)\)
4) \(2⋮\left(x-1\right)\Rightarrow x-1\in U\left(2\right)=\left\{1;2\right\}\Rightarrow x\in\left\{2;3\right\}\left(x\inℕ\right)\)
1. 2 chia hết cho x
Ta có 2 là số chẵn, nên x phải là số chẵn. Vậy các số tự nhiên x thỏa mãn là x = 2, 4, 6, …
2. 2 chia hết cho (x + 1)
Ta có 2 chia hết cho (x + 1) khi và chỉ khi x + 1 là số chẵn. Điều này tương đương với x là số lẻ. Vậy các số tự nhiên x thỏa mãn là x = 1, 3, 5, …
3. 2 chia hết cho (x + 2)
Ta có 2 chia hết cho (x + 2) khi và chỉ khi x + 2 là số chẵn. Điều này tương đương với x là số chẵn. Vậy các số tự nhiên x thỏa mãn là x = 0, 2, 4, …
4. 2 chia hết cho (x - 1)
Ta có 2 chia hết cho (x - 1) khi và chỉ khi x - 1 là số chẵn. Điều này tương đương với x là số lẻ. Vậy các số tự nhiên x thỏa mãn là x = 3, 5, 7, …
\(a,\)\(x+80⋮x+3\)
\(\Rightarrow\)\(\left(x+3\right)+77⋮x+3\)
Vì \(x+3⋮x+3\)
nên \(77⋮x+3\)
\(\Rightarrow\)\(x+3\inƯ\left(77\right)\)
\(\Rightarrow\)\(x+3\in\left\{1;-1;7;-7;11;-11;77;-77\right\}\)
\(\Rightarrow\)\(x\in\left\{-2;-4;4;-10;8;-14;74;-80\right\}\)
mà \(x\in N\)nên \(x\in\left\{4;8;74\right\}\)
\(b,\)\(2x+65⋮x+1\)
\(\Rightarrow\)\(2\left(x+1\right)+63⋮x+1\)
Vì \(x+1⋮x+1\)
nên \(2\left(x+1\right)⋮x+1\)
Do đó, \(63⋮x+1\)
\(\Rightarrow\)\(x+1\inƯ\left(63\right)\)
\(\Rightarrow\)\(x+1\in\left\{1;-1;3;-3;7;-7;9;-9;21;-21;63;-63\right\}\)
\(\Rightarrow\)\(x\in\left\{0;-2;2;-4;6;-8;8;-10;20;-22;62;-64\right\}\)
mà \(x\in N\)nên \(x\in\left\{0;2;6;8;20;62\right\}\)
ta co : (2n+1) chia het cho (2n+1) (1)
=> 2(2n+1) chia het cho (2n+1) hay (4n-2) chia het cho (2n+1)
Ma (4n-5) chia het cho (2n-1) (2)
tu (1) va (2) => (4n-2)-(4n-2) chia het cho (2n-1)
=>3chia het cho (2n+1) hay (2n+1) thuoc U(3) ma U(3) = {1;3}
Neu 2n+1=-3=>n=-2
--- 2n+1=-1=>n=-1
--- 2n+1=1=>n=0
--- 2n+1=3=>n=1
vay n={-2;-1;0;1}
dua vao cach tren ma lam
a) 7 chia hết cho x+1 => x+1={1;7} => x={0;6}
b) 12 chia hết cho x-4 => x-4={1; 3, 4; 6; 12} => x={5;7;8;10;16}
c) \(\frac{11-x}{x}=\frac{11}{x}-1\) => 11 chia hết cho x và x\(\le\)11 => x={1;11}
\(x+11⋮x+1\)
Mà \(x+1⋮x+1\)
\(\Leftrightarrow10⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(10\right)\)
Ta có các trường hợp :
+) x + 1 = 1 => x = 0
+) x + 1 = 2 => x = 1
+) x + 1 = 5 => x = 4
+) x + 1 = 10 => x =9
Vậy ...
x+11 chia hết cho x+1
=> x+1+10 chia hết cho x+1
=> x+1 chia hết cho x+1 ; 10 chia hết cho x+1
=> x+1 thuộc Ư(10)={1,2,5,10}
Ta có bảng :
Vậy x={0,1,4,9}