K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác ADME có 

AD//ME

DM//AE

Do đó: ADME là hình bình hành

b) Xét ΔEMC có \(\widehat{EMC}=\widehat{C}\left(=\widehat{B}\right)\)

nên ΔEMC cân tại E

Suy ra: EM=EC

Ta có: AE+EC=AC(E nằm giữa A và C)

mà AE=DM(AEMD là hình bình hành

mà EM=EC(cmt)

nên AC=MD+ME

2 tháng 10 2021

cho mình hỏi ngu tí là ở câu b đó ạ,từ đâu mà suy ra được góc EMC = C(=B) ạ :((

30 tháng 7 2017

1 phần thôi nhé

Nối BE, Gọi P là giao điểm của AD với BE.

Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).

Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)

Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)

Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác).  (4)

Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB

<=>  BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC  

<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5) 

    Chú ý: Ta cm được: CA=CD (biến đổi góc).

Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)

=> DpCm. 

8 tháng 10 2019

Vì ADHE là hình chữ nhật nên OD = OH

Suy ra, tam giác ODH cân tại O ⇒ ∠ ODH =  ∠ OHD

Mà Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét tam giác MBD có:

∠ (MDB) =  ∠ (MBD) (vì cùng phụ với hai góc bằng nhau  ∠ (MDH) =  ∠ (MHD))

Suy ra, tam giác MBD cân tại M, do đó MD = MB (2)

Từ (1) và (2) suy ra, MB = MH

Vậy M là trung điểm của BH

Tương tự, ta cũng có N là trung điểm của CH.