K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2021

Vì \(\angle MAE\) là góc tạo bởi tiếp tuyến MA và dây cung AE nên bằng góc nội tiếp chắn cung AE \(\Rightarrow=\angle MKA\)

Xét \(\Delta MAE\) và \(\Delta MKA:\) Ta có: \(\left\{{}\begin{matrix}\angle KMAchung\\\angle MAE=\angle MKA\end{matrix}\right.\)

\(\Rightarrow\Delta MAE\sim\Delta MKA\left(g-g\right)\Rightarrow\angle MEA=\angle MAK\)

5 tháng 6 2021

ủa H ở đâu vậy

8 tháng 6 2021

H là giao điểm AB và OM.

 

26 tháng 1 2023

*Mấu chốt bài này là c/m 5 điểm M,A,I,O,B nằm trên cùng 1 đg tròn.

- Ta có: △OAM vuông tại A, △OBM vuông tại B.

\(\Rightarrow\)△OAM, △OBM nội tiếp đường tròn đường kính OM.

\(\Rightarrow\)AMBO nội tiếp đường tròn đường kính OM (1).

- Ta có AC//EF \(\Rightarrow\widehat{ACB}=\widehat{MIB}\) (2 góc so le trong).

- Trong (O) có:

\(\widehat{ACB}\) là góc nội tiếp chắn cung AB.

\(\widehat{MAB}\) là góc tạo bởi tia tiếp tuyến MA và dây cung AB.

\(\Rightarrow\widehat{ACB}=\widehat{MAB}\)

\(\Rightarrow\widehat{MAB}=\widehat{MIB}\). Do đó AIBM nội tiếp (2). (2 góc cùng nhìn 1 cạnh bằng nhau).

\(\left(1\right),\left(2\right)\Rightarrow\)A,M,B,O,I cùng nằm trên đường tròn đường kính OM.

\(\Rightarrow\)△OIM nội tiếp đường tròn đường kính OM.

\(\Rightarrow\)△OIM vuông tại I nên OI vuông góc với EF tại I.

Trong (O): EF là dây cung, OI là 1 phần đường kính, \(OI\perp EF\) tại I..

\(\Rightarrow\)I là trung điểm EF (đpcm).

 

26 tháng 1 2023

Hình vẽ:

loading...

a: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

b: Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA/MD=MC/MA

=>MA^2=MD*MC