Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{8}{9}-\frac{1}{72}-\frac{1}{56}-...-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{8}{9}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{56}+\frac{1}{72}\right)\)
\(=\frac{8}{9}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
\(=\frac{8}{9}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{8}{9}-\left(1-\frac{1}{9}\right)\)
\(=\frac{8}{9}-\frac{8}{9}=0\)
\(E=\dfrac{\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2002}-1\right)\left(\dfrac{1}{2003}-1\right)}{\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot...\cdot\dfrac{9999}{10000}}\)
\(=\dfrac{\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2002}\right)\left(1-\dfrac{1}{2003}\right)}{\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{100^2}\right)}\)
\(=\dfrac{\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2002}\right)\left(1-\dfrac{1}{2003}\right)}{\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{100}\right)\left(1+\dfrac{1}{100}\right)}\)
\(=\dfrac{\dfrac{100}{101}\cdot\dfrac{101}{102}\cdot...\cdot\dfrac{2002}{2003}}{\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1+\dfrac{1}{100}\right)}\)
\(=\dfrac{100}{2003}:\left(\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\right)\)
\(=\dfrac{100}{2003}:\left(\dfrac{101}{2}\right)=\dfrac{100}{2003}\cdot\dfrac{2}{101}=\dfrac{200}{202303}\)
\(\frac{28}{14}=2\)
\(\frac{5}{2}:2=\frac{5}{4}\)
\(\frac{8}{4}=2\)
\(\frac{1}{2}:\frac{2}{3}=\frac{3}{4}\)
\(\frac{3}{10}\)
\(\frac{21}{10}:7=\frac{3}{10}\)
\(3:\frac{3}{10}=\frac{1}{10}\)
từ đó ta có các tỉ lệ thức bằng nhau là:
28:14=8:4
3:10=2,1:7
Áp dụng t/c dtsbn:
\(\dfrac{x-1}{8}=\dfrac{x+1}{12}=\dfrac{x+1-x+1}{12-8}=\dfrac{2}{4}=\dfrac{1}{2}\)
\(\Rightarrow x-1=\dfrac{1}{2}.8=4\Rightarrow x=4+1=5\)
12(x-1)=8(x+1)
12x - 12 =8x + 8
12x - 8x = 8 +12
4x. = 20
x. = 20 :4
x. = 5
\(f\left(0\right)=c=8\)
\(f\left(1\right)=a+b+c=a+b+8=9\Rightarrow a+b=1\) (1)
\(f\left(-1\right)=a-b+c=a-b+8=-11\Rightarrow a-b=-19\) (2)
-Từ (1) và (2) suy ra: \(a=-9;b=10\)
f(0)=c=8f(0)=c=8
f(1)=a+b+c=a+b+8=9⇒a+b=1f(1)=a+b+c=a+b+8=9⇒a+b=1 (1)
f(−1)=a−b+c=a−b+8=−11⇒a−b=−19f(−1)=a−b+c=a−b+8=−11⇒a−b=−19 (2)
-Từ (1) và (2) suy ra: a=−9;b=10
Đặt \(A=-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{2014}\)
\(\Rightarrow-A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(-A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(\Rightarrow-2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(\Rightarrow-2A-\left(-A\right)=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^9}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{10}}\right)\)
\(-A=2-\frac{1}{2^{10}}\)
\(\Rightarrow A=\frac{1}{2^{10}}-2\)