Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
=> AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.
Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago) mà BN=9cm (gt)
=>AN2+AB2=81 Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81 (1)
Tam giác ABC vuông tại A có: AC2+AB2=BC2 => BC2 - AB2 = AC2 (2)
Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC2 - AB2)+AB2=81 mà BC=12(cmt)
=> 36 - \(\frac{1}{4}\)AB2+AB2=81
=> 36+\(\frac{3}{4}\)AB2=81
=> AB2=60=>AB=\(\sqrt{60}\)
C2
Cho hình thang cân ABCD có đáy lớn CD = 1
C4
Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath
a, Tính được DB=15cm. A D B ^ ≈ 37 0 ; A B D ^ ≈ 53 0
b, Tính được AO=7,2cm, DO=9,6cm và AC=20cm
c, Kẻ OK ⊥ DC tại K
DH=AB=9cm, DC=16cm, DK=5,76cm và OK=7,68cm
Từ đó S D O H = O K . D H 2 = 7 , 68 . 9 2 = 34,56 c m 2
\(\text{Xét: }\Delta BGA\perp G\text{ thì }BG^2+GA^2=AB^2\)
\(\Leftrightarrow\frac{4}{9}\left(BE^2+AD^2\right)=AB^2\)
\(\Leftrightarrow BE^2+\frac{1}{4}BC^2=\frac{27}{2}\)(1)
\(\text{Có trong: }\Delta ABE\text{ thì }AB^2+AE^2\)
\(\Leftrightarrow6+\frac{1}{4}AC^2=BE^2\)(2)
Từ (1) và (2), ta có:
\(BC^2+AC^2=30\left(cm\right)\)
Mà: \(BC^2-AC^2=AB^2=6\left(cm\right)\)
Nên \(BC^2=18\)
\(\Rightarrow BC=3\sqrt{2}\left(cm\right)\)
Áp dụng Pitago cho tg ABG
Áp dụng Pitago cho tg BDG
Tiếp tục làm tiếp nha bạn :")
Xét tam giác \(BGA\)vuông tại \(G\):
\(BA^2=BG^2+GA^2=\frac{4}{9}\left(BE^2+AM^2\right)\Leftrightarrow BE^2+\frac{BC^2}{4}=\frac{27}{2}\)(1)
Xét tam giác \(ABE\)vuông tại \(A\):
\(BE^2=AB^2+AE^2=6+\frac{1}{4}AC^2\)(2)
Từ (1) và (2) suy ra \(BC^2+AC^2=30\)
mà \(BC^2=AC^2+6\)
suy ra \(BC^2=18\Rightarrow BC=3\sqrt{2}\left(cm\right)\).
bài 1) dùng tỉ số lượng giác lần lượt tính được AD=\(10\sqrt{3}cm\);AC=\(20\sqrt{3}cm\);AB=20cm
do đó Shình thang=\(\frac{\left(AB+CD\right)\cdot AD}{2}=\frac{\left(20+30\right)\cdot10\sqrt{3}}{2}=\frac{500\sqrt{3}}{2}cm^2\)