Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Phát biểu “Mọi số tự nhiên n đều chia hết cho 3” là một phát biểu sai (vì 2 là số tự nhiên nhưng 2 không chia hết cho 3). Đây là một mệnh đề.
b) Phát biểu “Tồn tại số tự nhiên n đều chia hết cho 3” là một phát biểu đúng (chẳng số 3 là số tự nhiên và 3 chia hết cho 3). Đây là một mệnh đề.
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
"n chia hết cho 3", với n là số tự nhiên. Đây là không phải là 1 mệnh đề vì không xác định được tính đúng sai của mệnh đề này (phụ thuộc vào biến n)
Thay : “số tự nhiên n chia hết cho 6” bới P, “số tự nhiên n chia hết cho 3” bởi Q, ta được mệnh đề R có dạng: “Nếu P thì Q”
a. Đúng, vì $9\vdots 3$ nên $n\vdots 9\Rightarrow n\vdots 3$
b. Sai. Vì cho $n=2\vdots 2$ nhưng $2\not\vdots 4$
c. Đúng, theo định nghĩa tam giác cân
d. Sai. Hình thang cân là 1 phản ví dụ.
e.
Sai. Cho $m=-1; n=-2$ thì $m^2< n^2$
f.
Đúng, vì $a\vdots c, b\vdots c$ nên trong $ab$ có chứa nhân tử $c$
g.
Sai. Hình bình hành là hình thang có 2 cạnh bên bằng nhau nhưng không phải hình thang cân.
a) Không thể khẳng định câu trên là đúng hay sai.
b)
+) n = 0 hoặc n =5 thì “n chia hết cho 5” là khẳng định đúng.
+) n = 2 hoặc n =34 thì “n chia hết cho 5” là khẳng định sai.
Giải sử tồn tại n để
A=n^2 +n+1 chia hết 2010
2010=67.5.2.3
=> A phải chia hết cho 2
A=n(n+1)+1 luôn là số lẻ => không tồn tại A chia hết cho 2010
Cậu có thể viết lời giải ra cụ thể ra được ko ?