Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a , Δ A B C , A ⏜ = 90 0 , A H ⊥ B C g t ⇒ A H = B H . C H = 4.9 = 6 c m Δ A B H , H ⏜ = 90 0 g t ⇒ tan B = A H B H = 6 4 ⇒ B ⏜ ≈ 56 , 3 0 b , Δ A B C , A ⏜ = 90 0 , M B = M C g t ⇒ A M = 1 2 B C = 1 2 .13 = 6 , 5 c m S Δ A H M = 1 2 M H . A H = 1 2 .2 , 5.6 = 7 , 5 c m 2
Vì AM là trung tuyến ứng với cạnh huyền BC nên \(AM=\dfrac{1}{2}BC=7,5\left(cm\right)\)
Áp dụng PTG: \(AC=\sqrt{BC^2-AB^2}=12\left(cm\right)\)
Áp dụng HTL: \(\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=7,2\left(cm\right)\\BH=\dfrac{AB^2}{BC}=5,4\left(cm\right)\end{matrix}\right.\)
Áp dụng PTG: \(HM=\sqrt{AM^2-AH^2}=2,1\left(cm\right)\)
Vậy \(S_{AHM}=\dfrac{1}{2}HM\cdot AH=\dfrac{1}{2}\cdot2,1\cdot7,2=7,56\left(cm^2\right)\)
\(a,BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\\ HTL:\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{60}{13}\left(cm\right)\\BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\\ b,AM=\dfrac{1}{2}BC=\dfrac{13}{2}\left(cm\right)\left(trung.tuyến.ứng.cạnh.huyền\right)\\ \Rightarrow HM=\sqrt{AM^2-AH^2}=\dfrac{119}{26}\left(cm\right)\\ \Rightarrow S_{AHM}=\dfrac{1}{2}AH\cdot HM=\dfrac{1}{2}\cdot\dfrac{60}{13}\cdot\dfrac{119}{26}=\dfrac{1785}{169}\left(cm^2\right)\)
a: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến ứng với cạnh huyền BC
nên \(AM=\dfrac{BC}{2}\)
hay BC=20(cm)
Theo đề, ta có: \(HB\left(20-HB\right)=64\)
\(\Leftrightarrow HB^2-20HB+64=0\)
\(\Leftrightarrow HB=4\left(cm\right)\)
\(\Leftrightarrow HC=16\left(cm\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}AB=4\sqrt{5}\left(cm\right)\\AC=8\sqrt{5}\left(cm\right)\end{matrix}\right.\)
a, Tìm được BH=9cm, CH=16cm, AB=15cm, và AC=20cm
b, Tìm được A M H ^ ≈ 73 , 74 0
c, S A H M = 21 c m 2
Bài 1:
Theo pytago ta có: HB2 + AH2 = AB2
⇒ HB2 = AB2 - AH2
HB2 = 102 - 82 = 36
HB = \(\sqrt{36}\) = 6 (cm)
Xét tam giác ABC và tam giác HBA có:
\(\widehat{BAC}\) = \(\widehat{BHA}\) = 900
\(\widehat{ABC}\) = \(\widehat{HBA}\)
⇒ \(\Delta\) ABC \(\sim\) \(\Delta\) HBA (g - g)
⇒ \(\dfrac{AB}{HB}\) = \(\dfrac{BC}{BA}\)
BC = \(\dfrac{AB}{HB}\) \(\times\) AB
BC = \(\dfrac{10.10}{6}\) = \(\dfrac{50}{3}\) (cm)
SABC = \(\dfrac{1}{2}\)BC \(\times\) AH = \(\dfrac{1}{2}\) \(\times\) \(\dfrac{50}{3}\) \(\times\) 8 = \(\dfrac{200}{3}\) (cm2)
Vì M là trung điểm của tam giác ABC nên
SABM = \(\dfrac{1}{2}\) SABC (hai tam giác có chung chiều cao hạ từ đỉnh A xuống đáy BC và BM = \(\dfrac{1}{2}\) BC)
SABM = \(\dfrac{200}{3}\).\(\dfrac{1}{2}\) = \(\dfrac{100}{3}\) (cm2)
SAHB = \(\dfrac{1}{2}\)AH.HB = \(\dfrac{8.6}{2}\) = 24 (cm2)
SAHB + SAHM = SABM
⇒ SAHM = SABM - SAHB
SAHM = \(\dfrac{100}{3}\) - 24 = \(\dfrac{28}{3}\) (cm2)
Kết luận: BC dài \(\dfrac{50}{3}\) cm; Diện tích tam giác AHM là \(\dfrac{28}{3}\) cm2