K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2018

\(4a^2+9b^2\ge12ab\)

\(\left(2a\right)^2+\left(3b\right)^2-12ab\ge0\)

\(\left(2a\right)^2-2\cdot2a\cdot3b+\left(3b\right)^2\ge0\)

\(\left(2a-3b\right)^2\ge0\left(đpcm\right)\)

13 tháng 10 2018

ta có: 4a2 + 9b2 - 12ab = (2a)2 - 2.2a.3b + (3b)2 =  ( 2a-3b)2

mà \(\left(2a-3b\right)^2\ge0\)

\(\Rightarrow4a^2+9b^2-12ab\ge0\Rightarrow4a^2+9b^2\ge12ab\)

23 tháng 3 2020

Không biết ông tth SOS như thế nào nhưng mik thì đơn giản thôi ( không có ý định cà khịa nhé người anh em )

Đặt \(x=2a;y=3b;z=5c\)

Khi đó:BĐT cần chứng minh tương đương với:

\(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( đúng )

=> ĐPCM

23 tháng 3 2020

mình đăng câu hỏi này zì đã đọc cuộc cãi lộn giữa các ctv thôi

haha

3 tháng 11 2019

Áp dụng BĐT Cauchy cho 2 số không âm:

\(4a^2+9b^2\ge2\sqrt{4a^2.9b^2}=2.6ab=12ab\)

\(9b^2+25c^2\ge2\sqrt{9b^2.25c^2}=2.15bc=30bc\)

\(4a^2+25c^2\ge2\sqrt{4a^2.25c^2}=2.10ac=20ac\)

Cộng từng vế của các BĐT trên:

\(2\left(4a^2+9b^2+25c^2\right)\ge2\left(6ab+10ac+15bc\right)\)

\(\Rightarrow4a^2+9b^2+25c^2\ge6ab+10ac+15bc\)

(Dấu "="\(\Leftrightarrow a=b=c=0\))

3 tháng 11 2019

\(\text{BĐT}\Leftrightarrow\frac{\left(4a-3b-5c\right)^2+3\left(3b-5c\right)^2}{4}\ge0\) (đúng)

Đẳng thức xảy ra khi \(\hept{\begin{cases}4a=3b+5c\\3b=5c\end{cases}}\Leftrightarrow\hept{\begin{cases}4a=6b\\4a=10c\end{cases}}\Leftrightarrow a=\frac{3}{2}b=\frac{5}{2}c\)

Không chắc chỗ dấu bằng cho lắm:)

11 tháng 3 2021

Áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(\left(4a^2+9b^2\right)\left(2^2+2^2\right)\ge\left(2a.1-3b.2\right)^2=\left(4a-6b\right)^2=1\)

\(\Rightarrow4a^2+9b^2\ge\dfrac{1}{8}\).

Đẳng thức xảy ra khi \(a=\dfrac{1}{8};b=\dfrac{-1}{12}\).

19 tháng 7 2019

a) \(a^2+2a+1-b^2\)

\(=\left(a+1\right)^2-b^2\)

\(=\left(a+1-b\right)\left(a+1+b\right)\)

b) \(4a^2+4a+1-9b^2\)

\(=\left(2a\right)^2+4a+1-\left(3b\right)^2\)

\(=\left(2a+1\right)^2-\left(3b\right)^2\)

\(=\left(2a+1-3b\right)\left(2a+1+3b\right)\)

12 tháng 2 2017

4a2+9b2+16c2=4a+6b+8c+3 <=>4a2-4a+1+9b2-6b+1+16c2-8c+1=6 <=> (2a-1)2+(3b-1)2+(4c-1)2=6. hướng dẫn đến đây nhe bạn

22 tháng 7 2021

4a2 + 9b2 - 20a + 6b + 26 = 0 <=> ( 2a - 5 )2 + ( 3b + 1 )2 = 0 <=> a = 5/2 ; b = -1/3

5a2 + b2 - 2a + 4ab + 1 = 0 <=> ( 2a + b )2 + ( a - 1 )2 = 0 <=> a = 1 ; b = -2

22 tháng 7 2021

1) Ta có 4a2 + 9b2 - 20a + 6b + 26 = 0

<=> (4a2 - 20a + 25) + (9b2 + 6b + 1) = 0

<=> (2a - 5)2 + (3b + 1)2 = 0

<=> \(\hept{\begin{cases}2a-5=0\\3b+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{5}{2}\\b=-\frac{1}{3}\end{cases}}\)

Vậy a = 5/2 ; b = -1/3

2) Ta có 5a2 + b2 - 2a + 4ab + 1 = 0

<=> (4a2 + 4ab + b2) + (a2 - 2a + 1) = 0

<=> (2a + b)2 + (a - 1)2 = 0

<=> \(\hept{\begin{cases}2a+b=0\\a-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}b=-2\\a=1\end{cases}}\)

Vậy b = -2 ;  a = 1

11 tháng 9 2023

\(a.2a+4b+\left(-4b+5a\right)-\left(6a-9b\right)\) 

\(=2a+4b-4b+5a-6a+9b\) 

\(=\left(2a+5a-6a\right)+\left(4b-4b+9b\right)\) 

\(=a+9b\) 

\(b.6a\left[b+3a-\left(4a-b\right)\right]\) 

\(=6a\left[b+3a-4a+b\right]\) 

\(=6a\left[4a-a+b+b\right]\) 

\(=6a\left(3a-2b\right)\)