K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2016

a)4x-3 chia hết cho x-2

4x-8+5 chia hết cho x-2

(4x-8)+5 chia hết cho x-2

4(x-2)+5 chia hết cho x-2 <=> 5 chia hết cho x-2 [vì 4(x-2) luôn chia hết cho x-2]

 x-2 E {1;-1;5;-5}

Nếu x-2=1          Nếu x-2=-1            Nếu x-2=5          Nếu x-2=-5

       x=1+2=3            x=-1+2=1             x=5+2=7             x=-5+2=-3

21 tháng 6 2018

(2018a+3b+1)(2018a+2018a+b)=225

=> 2018a+3b+1 và 2018a+2018a+b lẻ

+)Xét \(a\ne0\) 

=> 2018a+2018a chẵn 

Mà 2018a+2018a+b lẻ => b lẻ

Nếu b lẻ => 3b+1 chẵn => 2018a+3b+1 chẵn (loại)

+)Xét a=0

=> (2018.0+3b+1)(20180+2018.0+b)=225

=> (3b+1)(b+1)=225

Vì b thuộc N => 3b+1,b+1 thuộc N => (3b+1)(b+1)=1.225=9.25=3.75=5.45

Vì 3b+1 > b+1 và 3b+1 không chia hết cho 3

=> \(\hept{\begin{cases}3b+1=25\\b+1=9\end{cases}\Rightarrow b=8}\)

Vậy a+b=0+8=8

26 tháng 8 2020

A.

( 2x + 1 )( y - 5 ) = 12

Ta có bảng sau :

2x+11-12-23-34-46-612-12
y-512-126-64-43-32-21-1
x0-10,5-1,51-21,5-2,52,5-3,55,5-6,5
y17-711-191827364

Vì x , y thuộc N => ( x ; y ) = { ( 0 ; 17 ) , ( 1 ; 9 ) }

B.

4n - 5 chia hết cho 2n - 1

=> 2( 2n - 1 ) - 3 chia hết cho 2n - 1

=> 3 chia hết cho 2n - 1

=> 2n - 1 thuộc Ư(3) = { ±1 ; ±3 }

2n-11-13-3
n102-1

Vì n là số tự nhiên => n = { 1 ; 0 ; 2 }

23 tháng 8 2023

a) Giả sử \(x^2+x⋮̸9\)

\(\Rightarrow x^2+x=x\left(x+1\right).x\left(x+1\right)⋮̸9\)

\(\Rightarrow x^2+x+1⋮̸9\)

\(\Rightarrow dpcm\)

b) \(x^2+x+1=3^y\)

\(\Rightarrow x\left(x+1\right)=3^y-1\left(1\right)\)

Ta thấy \(x\left(x+1\right)\) là số chẵn

\(\left(1\right)\Rightarrow3^y-1\) là số chẵn

\(\Rightarrow y\) là số lẻ

\(\Rightarrow\left\{{}\begin{matrix}x\left(x+1\right)=3^y-1\left(x\inℕ\right)\\y=2k+1\left(k\inℕ\right)\end{matrix}\right.\) thỏa đề bài

23 tháng 8 2023

Đính chính

a) Giả sử \(x^2+x\) \(⋮̸9\)

\(\Rightarrow x^2+x=x\left(x+1\right)\) \(⋮̸9\)

\(\Rightarrow x\left(x+1\right).x\left(x+1\right)\) \(⋮̸9\)

\(\Rightarrow x^2+x+1\) \(⋮̸9\)

b) \(x^2+x+1=3^y\)

\(\Rightarrow x\left(x+1\right)=3^y-1\left(1\right)\)

mà \(\left\{{}\begin{matrix}x\left(x+1\right)\\3^y-1\end{matrix}\right.\) là số chẵn

\(\left(1\right)\Rightarrow\) \(\left\{{}\begin{matrix}x\left(x+1\right)=3^y-1=2k\\\forall x;y;k\inℕ\end{matrix}\right.\)

25 tháng 8 2023

a) Ta đặt \(P\left(x\right)=x^2+x+1\)

\(P\left(x\right)=x^2+x-20+21\)

\(P\left(x\right)=\left(x+5\right)\left(x-4\right)+21\)

Giả sử tồn tại số tự nhiên \(x\) mà \(P\left(x\right)⋮9\) \(\Rightarrow P\left(x\right)⋮3\). Do \(21⋮3\)  nên \(\left(x+5\right)\left(x-4\right)⋮3\)

Mà 3 là số nguyên tố nên suy ra \(\left[{}\begin{matrix}x+5⋮3\\x-4⋮3\end{matrix}\right.\)

Nếu \(x+5⋮3\) thì suy ra \(x-4=\left(x+5\right)-9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)

Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.

Nếu \(x-4⋮3\) thì suy ra \(x+5=\left(x-4\right)+9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)

Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.

Vậy điều giả sử là sai \(\Rightarrow x^2+x+1⋮̸9\)

b) Vì \(x^2+x+1⋮̸9\) nên \(y\le1\Rightarrow y\in\left\{0;1\right\}\)

Nếu \(y=0\Rightarrow x^2+x+1=1\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)

Nếu \(y=1\) \(\Rightarrow x^2+x+1=3\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)

Vậy ta tìm được các cặp số (x; y) thỏa ycbt là \(\left(0;0\right);\left(1;1\right)\)

25 tháng 8 2023

a) Ta đặt 

(

)
=

2
+

+
1
P(x)=x 
2
 +x+1


(

)
=

2
+


20
+
21
P(x)=x 
2
 +x−20+21


(

)
=
(

+
5
)
(


4
)
+
21
P(x)=(x+5)(x−4)+21

Giả sử tồn tại số tự nhiên 

x mà 

(

)

9
P(x)⋮9 


(

)

3
⇒P(x)⋮3. Do 
21

3
21⋮3  nên 
(

+
5
)
(


4
)

3
(x+5)(x−4)⋮3. 

Mà 3 là số nguyên tố nên suy ra 
[

+
5

3


4

3

  
x+5⋮3
x−4⋮3

 

Nếu 

+
5

3
x+5⋮3 thì suy ra 


4
=
(

+
5
)

9

3
x−4=(x+5)−9⋮3 

(

+
4
)
(


5
)

9
⇒(x+4)(x−5)⋮9

Lại có 

(

)

9
P(x)⋮9 nên 
21

9
21⋮9, vô lí.

Nếu 


4

3
x−4⋮3 thì suy ra 

+
5
=
(


4
)
+
9

3
x+5=(x−4)+9⋮3 

(

+
4
)
(


5
)

9
⇒(x+4)(x−5)⋮9

Lại có 

(

)

9
P(x)⋮9 nên 
21

9
21⋮9, vô lí.

Vậy điều giả sử là sai \Rightarrow x^2+x+1⋮̸9

b) Vì x^2+x+1⋮̸9 nên 


1



{
0
;
1
}
y≤1⇒y∈{0;1}

Nếu 

=
0


2
+

+
1
=
1
y=0⇒x 
2
 +x+1=1



(

+
1
)
=
0
⇔x(x+1)=0


[

=
0
(




)

=

1
(




)
⇔[ 
x=0(nhận)
x=−1(loại)

 

Nếu 

=
1
y=1 


2
+

+
1
=
3
⇒x 
2
 +x+1=3



2
+


2
=
0
⇔x 
2
 +x−2=0


(


1
)
(

+
2
)
=
0
⇔(x−1)(x+2)=0


[

=
1
(




)

=

2
(




)
⇔[ 
x=1(nhận)
x=−2(loại)

 

Vậy ta tìm được các cặp số (x; y) thỏa ycbt là 
(
0
;
0
)
;
(
1
;
1
)
(0;0);(1;1)

2:

a: 5/x-y/3=1/6

=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)

=>\(\dfrac{30-2xy}{6x}=\dfrac{x}{6x}\)

=>30-2xy=x

=>x(2y+1)=30

=>(x;2y+1) thuộc {(30;1); (-30;-1); (10;3); (-10;-3); (6;5); (-6;-5)}

=>(x,y) thuộc {(30;0); (-30;-1); (10;1); (-10;-2); (6;2); (-6;-3)}

b: x/6-2/y=1/30

=>\(\dfrac{xy-12}{6y}=\dfrac{1}{30}\)

=>\(\dfrac{5xy-60}{30y}=\dfrac{y}{30y}\)

=>5xy-60=y

=>y(5x-1)=60

=>(5x-1;y) thuộc {(-1;-60); (4;15); (-6;-10)}(Vì x,y là số nguyên)

=>(x,y) thuộc {(0;-60); (1;15); (-1;-10)}

12 tháng 7 2023

bài 1 ???

8 tháng 8 2016

ta có : \(2^{33}\equiv8\)(mod31)

\(\left(2^{33}\right)^{11}=2^{363}\equiv8\)(mod31)

\(\left(2^{363}\right)^5=2^{1815}\equiv1\)(mod31)

\(\left(2^{33}\right)^6\equiv2^{198}\equiv8\)(mod31)

=> \(2^{1815}.2^{198}:2^2=2^{2011}\equiv1.8:4\equiv2\)(mod31)

vậy số dư pháp chia trên là 2