Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: Vế 100-902000 luôn có giá trị là bé hơn 100
100+990 luôn có giá trị là lớn hơn 100
⇒100+990>100-902000
\(100-90^{2000}< 0\)
\(0< 100+90^0\)
Do đó: \(100-90^{2000}< 100+99^0\)
đặt A=100^10+1/100^10-1
B=10^100+1/10^100-3
ta có:\(A=\frac{100^{10}+1}{100^{10}-1}=\frac{100^{10}-1+2}{100^{10}-1}=\frac{100^{10}-1}{100^{10}-1}+\frac{2}{100^{10}-1}=1+\frac{2}{100^{10}-1}\)
\(B=\frac{10^{100}+1}{10^{100}-3}=\frac{10^{100}-3+4}{10^{100}-3}=\frac{10^{100}-3}{10^{100}-3}+\frac{4}{10^{100}-3}=1+\frac{4}{10^{100}-3}=1+\frac{4}{100^{10}-3}\)
vì 10010-1>10010-3
=>\(\frac{4}{100^{10}-1}<\frac{4}{100^{10}-3}\)
=>A<B
=1/2+1/3+1/4+...+1/100
xét mẫu:có ssh là (100-2):1+1=99 số
tổng là (100+2)*99:2=5940
vậy ta có 1/5940
\(A=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)
\(\Rightarrow A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow A=1-\dfrac{1}{100}\)
\(\Rightarrow A=\dfrac{99}{100}\)
Đoạn suy ra đầu tiên cơ sở gì bạn suy ra được như vậy nhỉ?
Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}\)
\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(B=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\) \(\Rightarrow A< \dfrac{99}{100}\)
\(1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-...-\dfrac{1}{100^2}=1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\right)=1-A>\dfrac{1}{100}\)
\(A=1+5+5^2+5^3+..+5^{100}\)
\(5A=5+5^2+5^3+..+5^{101}\)
\(A=\frac{5^{101}-1}{4}\)\(SUYRA\) \(A< B\)
\(A=5^0+5+5^2+...+5^{100}.\)
\(\Rightarrow5A=5+5^2+5^3+...+5^{101}\)
\(\Rightarrow5A-A=4A=\left(5+5^2+5^3+...+5^{101}\right)-\left(5^0+5+5^2+...+5^{100}\right)\)
\(=5^{101}-1\)
\(\Rightarrow A=\frac{5^{101}-1}{4}\)
Còn lại tự lm nha bn
Ta có: \(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{99\cdot100}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{50}{100}-\dfrac{1}{100}=\dfrac{49}{100}\)
\(A=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)
\(A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\dfrac{1}{2}-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-...-\left(\dfrac{1}{99}-\dfrac{1}{99}\right)-\dfrac{1}{100}\)
\(A=\dfrac{1}{2}-0-0-0-...-0-\dfrac{1}{100}\)
\(A=\dfrac{1}{2}-\dfrac{1}{100}\)
\(A=\dfrac{50}{100}-\dfrac{1}{100}\)
\(A=\dfrac{49}{100}\)
\(100+97+94+...+4+1\)
Số các số hạng trong dãy số trên là:
\(\left(100-1\right):3+1=34\left(số\right)\)
Tổng các số trên bằng:
\(\left(100+1\right)\cdot34:2=1717\)
100 = 102 nha
\(100=10^2\)
Hc tốt
@Phengg☂️