Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(sinx=t\Rightarrow cosx.dx=dt\) ; \(\left\{{}\begin{matrix}x=\dfrac{\pi}{6}\Rightarrow t=\dfrac{1}{2}\\x=\dfrac{\pi}{2}\Rightarrow t=1\end{matrix}\right.\)
\(I=\int\limits^1_{\dfrac{1}{2}}\dfrac{dt}{1+t}=ln\left|1+t\right||^1_{\dfrac{1}{2}}=ln2-ln\left(\dfrac{3}{2}\right)=-ln3+2ln2\)
\(\Rightarrow ab=-2\)
Chọn C
Ta có: nên (1) và (2) có nghiệm.
Cách 1:
Xét: nên (3) vô nghiệm.
Cách 2:
Điều kiện có nghiệm của phương trình: sin x + cos x = 2 là:
(vô lý) nên (3) vô nghiệm.
Cách 3:
Vì
nên (3) vô nghiệm.
1) Tổng quát ta có A = \(\sum\limits^{k=1}_n\frac{1}{2^k}\) khi đó \(\lim\limits_{x\rightarrow+\infty}A=0\)
1, tổng cấp số nhân lùi vô hạn \(A=\frac{\frac{1}{2}}{1-\frac{1}{2}}=1\)
CMR các hàm số Đb , NB
1, y= \(sin^2x\)+x
2 ,y= \(3sinx-4sin^3x+3x\)3
3, y= \(cos^2x+x^3+3x^2+4x-2\)
a/ \(y'=2sinx.cosx+1=\left(sinx+cosx\right)^2\ge0\) ;\(\forall x\)
\(\Rightarrow\) Hàm đồng biến trên R
b/ Số cuối là 3x hay \(3x^3\) vậy nhỉ?
c/ \(y'=-2sinx.cosx+3x^2+6x+4\)
\(y'=\left(sinx-cosx\right)^2+3\left(x+1\right)^2\ge0\) ;\(\forall x\)
Hàm đồng biến trên R