Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có 17(x-10)=39(y-4). Ta có 17(x-10)=39(y-4), suy ra x-10=39k, y-4=17k. Vậy nghiệm của phương trình là \(x=39k+10,y=17k+4\) với k nguyên tùy ý.
2)Các bài sau làm tương tự
3(x2 + xy + y2) = x + 8y
<=> 3x2 + (3y - 1)x + (3y2 - 8y) = 0
Để phương trình theo nghiệm x có nghiệm thì
∆ = (3y - 1)2 - 4.3.(3y2 - 8y) \(\ge\)0
<=> - 27y2 + 90y + 1 \(\ge\)0
<=> - 0,011 \(\le\)y \(\le\)3,344
Mà vì y nguyên nên
\(\Rightarrow0\le y\le3\)
\(\Rightarrow\)y = (0, 1, 2, 3)
\(\Rightarrow\)x = (...)
Cặp nào nguyên thì nhận. Không nguyên thì loại
=> (x2 - 8).y2 - 2xy - x2 = 0 (*)
Tính \(\Delta\)' = (-x)2 - (x2 - 8 ). (-x2) = x4 - 7x2
Để x nguyên <=> \(\Delta\)' là số cính phương <=> x4 - 7x2 = k2 ( k nguyên)
=> 4x4 - 28x2 = 4k2 => (2x2 -14)2 = (2k)2 + 196
=> (2x2 - 14)2 - (2k)2 = 196
=> (2x2 - 14 - 2k). (2x2 - 14 + 2k) = 196 = 14.14 = (-14). (-14) = 2. 98 = (-2). (-98)
Nhận xét: 2x2 - 14 - 2k; 2x2 - 14 + 2k chẵn
+) Th1 : 2x2 - 14 - 2k = - 14; 2x2 - 14 + 2k = -14
=> k = 0 => x2 = 0 => x = 0 . thay vào (*) => y
Giá trị y nguyên là các giá trị thoa mãn
các trường hợp còn lại : tương tự
+) Th2: 2x2 - 14 - 2k = 14; 2x2 - 14 + 2k = 14:
+) Th3: 2x2 - 14 - 2k = 2; 2x2 - 14 + 2k = 98
+) Th4: 2x2 - 14 - 2k = - 2; 2x2 - 14 + 2k = -98
Ta có: \(x^2y^2+x^2+y^2+4xy=73\)
<=> \(\left(x^2y^2+4xy+4\right)+x^2+y^2=77\)
<=> \(\left(xy+2\right)^2+x^2=77-y^2\) (1)
Do \(\left(xy+2\right)^2+x^2\ge0\) => \(77-y^2\ge\)0 => \(y^2\le77\)
Do y nguyên và y2 là số chính phương => y2 \(\in\){0; 1; 4; 9; 16; 25; 36; 49; 64}
=> \(y\in\left\{0;\pm1;\pm2;\pm3;\pm4;\pm5;\pm6;\pm7;\pm8\right\}\)
thay y vào pt (1) ... (tự làm)
Hoặc C2:
\(x^2y^2+x^2+y^2+4xy=73\)
<=> \(\left(x^2y^2+2xy+1\right)+\left(x^2+2xy+y^2\right)=74\)
<=> \(\left(xy+1\right)^2+\left(x+y\right)^2=74=5^2+7^2\)
Xét các TH xảy ra:
+) \(\hept{\begin{cases}xy+1=5\\x+y=7\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=-5\\x+y=7\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=5\\x+y=-7\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=-5\\x+y=-7\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=7\\x+y=5\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=-7\\x+y=5\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=7\\x+y=-5\end{cases}}\)
+) \(\hept{\begin{cases}xy+1=-7\\x+y=-5\end{cases}}\)
(Tự tính)
\(11x+8y=73\)
\(\Rightarrow11x+8y=33+40\)
\(\Rightarrow11x+8y=11.3+8.5\)
\(\Rightarrow\hept{\begin{cases}x=3\\y=5\end{cases}}\)
âm thì sao bạn