K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(11x+8y=73\)

\(\Rightarrow11x+8y=33+40\)

\(\Rightarrow11x+8y=11.3+8.5\)

\(\Rightarrow\hept{\begin{cases}x=3\\y=5\end{cases}}\)

22 tháng 11 2018

âm thì sao bạn

25 tháng 9 2015

1) Ta có 17(x-10)=39(y-4). Ta có 17(x-10)=39(y-4), suy ra x-10=39k, y-4=17k. Vậy nghiệm của phương trình là \(x=39k+10,y=17k+4\)  với k nguyên tùy ý.

2)Các bài sau làm tương tự

 

2 tháng 10 2016

Bài này bạn nhân bung ra rồi gom lại là đc

27 tháng 1 2017

3(x2 + xy + y2) = x + 8y

<=> 3x2 + (3y - 1)x + (3y2 - 8y) = 0

Để phương trình theo nghiệm x có nghiệm thì

∆ = (3y - 1)2 - 4.3.(3y2 - 8y) \(\ge\)0

<=> - 27y2 + 90y + 1 \(\ge\)0

<=> - 0,011 \(\le\)\(\le\)3,344

Mà vì y nguyên nên

\(\Rightarrow0\le y\le3\)

\(\Rightarrow\)y = (0, 1, 2, 3)

\(\Rightarrow\)x = (...)

Cặp nào nguyên thì nhận. Không nguyên thì loại

3 tháng 8 2015

=> (x- 8).y2 - 2xy - x= 0   (*)

Tính \(\Delta\)' = (-x)2 - (x2 - 8 ). (-x2) =  x4 - 7x2 

 Để x nguyên <=> \(\Delta\)' là số cính phương <=> x4 - 7x= k2  ( k nguyên)

=> 4x4 - 28x2 = 4k=> (2x2 -14)2 = (2k) + 196

=> (2x2 - 14)2 - (2k)2 = 196

=> (2x2 - 14 - 2k). (2x- 14 + 2k) = 196 = 14.14 = (-14). (-14)  = 2. 98  = (-2). (-98)

Nhận xét: 2x2 - 14 - 2k; 2x- 14 + 2k chẵn 

+) Th1 : 2x2 - 14 - 2k = - 14; 2x- 14 + 2k = -14

=> k = 0 => x2 = 0 => x = 0 . thay vào (*) => y 

Giá trị y nguyên là các giá trị thoa mãn

các trường hợp còn lại : tương tự

+) Th2:  2x2 - 14 - 2k = 14; 2x- 14 + 2k = 14:

+) Th3: 2x2 - 14 - 2k = 2; 2x- 14 + 2k = 98

+) Th4: 2x2 - 14 - 2k =  - 2; 2x- 14 + 2k = -98

26 tháng 8 2020

Ta có: \(x^2y^2+x^2+y^2+4xy=73\)

<=>  \(\left(x^2y^2+4xy+4\right)+x^2+y^2=77\)

<=> \(\left(xy+2\right)^2+x^2=77-y^2\) (1)

Do \(\left(xy+2\right)^2+x^2\ge0\) => \(77-y^2\ge\)0 => \(y^2\le77\)

Do y nguyên và y2 là số chính phương => y2 \(\in\){0; 1; 4; 9; 16; 25; 36; 49; 64}

=> \(y\in\left\{0;\pm1;\pm2;\pm3;\pm4;\pm5;\pm6;\pm7;\pm8\right\}\)

thay y vào pt (1) ... (tự làm)

Hoặc C2:

\(x^2y^2+x^2+y^2+4xy=73\)

<=> \(\left(x^2y^2+2xy+1\right)+\left(x^2+2xy+y^2\right)=74\)

<=> \(\left(xy+1\right)^2+\left(x+y\right)^2=74=5^2+7^2\)

Xét các TH xảy ra: 

+) \(\hept{\begin{cases}xy+1=5\\x+y=7\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=-5\\x+y=7\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=5\\x+y=-7\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=-5\\x+y=-7\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=7\\x+y=5\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=-7\\x+y=5\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=7\\x+y=-5\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=-7\\x+y=-5\end{cases}}\)

(Tự tính)