Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-5^{22}\left\{-222\left[-122-\left(100-5^{22}\right)+2022\right]\right\}\)
\(A=-5^{22}\left\{-222\left[1900-\left(100-5^{22}\right)\right]\right\}\)
\(A=-5^{22}\left[-222\left(1900-100+5^{22}\right)\right]\)
\(A=-5^{22}\left[-222\left(1800+5^{22}\right)\right]\)
\(A=-5^{22}\left(-399600-222\cdot5^{22}\right)\)
\(A=399600\cdot5^{22}+222\cdot5^{44}\)
Lời giải:
$=5^{22}-22+[122-(100+5^{22})+2022]$
$=5^{22}-22+122-100-5^{22}+2022$
$=(5^{22}-5^{22})+(-22+122-100)+2022$
$=0+0+2022=2022$
`(3x+1)^2=25.4`
<=> `(3x+1)^2=10^2`
<=> `3x+1=10` hoặc `3x+1=-10`
<=> `x=3` hoặc `x=-11/3`
A = - 522 - { - 222 - [ - 122 - (100 - 522) + 2022] }
A = - 522 - { -222 - [- 122 - 100 + 522 ] + 2022}
A = - 522 - { -222 - { - 222 + 522 } + 2022}
A = - 522 - {- 222 + 222 - 522 + 2022}
A = -522 + 522 - 2022
A = - 2022
B = 1 + \(\dfrac{1}{2}\)(1 + 2) + \(\dfrac{1}{3}\).(1 + 2 + 3) + ... + \(\dfrac{1}{20}\).(1 + 2+ 3 + ... + 20)
B = 1+\(\dfrac{1}{2}\)\(\times\)(1+2)\(\times\)[(2-1):1+1]:2+ ... + \(\dfrac{1}{20}\)\(\times\) (20 + 1)\(\times\)[(20-1):1+1]:2
B = 1 + \(\dfrac{1}{2}\) \(\times\) 3 \(\times\) 2:2 + \(\dfrac{1}{3}\) \(\times\)4 \(\times\) 3 : 2+....+ \(\dfrac{1}{20}\) \(\times\)21 \(\times\) 20 : 2
B = 1 + \(\dfrac{3}{2}\) + \(\dfrac{4}{2}\) + ....+ \(\dfrac{21}{2}\)
B = \(\dfrac{2+3+4+...+21}{2}\)
B = \(\dfrac{\left(21+2\right)\left[\left(21-2\right):1+1\right]:2}{2}\)
B = \(\dfrac{23\times20:2}{2}\)
B = \(\dfrac{23\times10}{2}\)
B = 23
a) 125 . 10 = 1 250
b) 2 021 . 100 = 202 100
c) 1 991 . 25 . 4 = 1 991 . (25 . 4) = 1 991 . 100 = 199 100
d) 3 025 . 125 . 8 = 3 025 . (125 . 8)
= 3 025 . 1 000 = 3 025 000
a)\(...A=\dfrac{2^{50+1}-1}{2-1}=2^{51}-1\)
b) \(...\Rightarrow B=\dfrac{3^{80+1}-1}{3-1}=\dfrac{3^{81}-1}{2}\)
c) \(...\Rightarrow C+1=1+4+4^2+4^3+...+4^{49}\)
\(\Rightarrow C+1=\dfrac{4^{49+1}-1}{4-1}=\dfrac{4^{50}-1}{3}\)
\(\Rightarrow C=\dfrac{4^{50}-1}{3}-1=\dfrac{4^{50}-4}{3}=\dfrac{4\left(4^{49}-1\right)}{3}\)
Tương tự câu d,e,f bạn tự làm nhé
\(1)\)
\(a)(-50).37=-1850\)
\(b)(-20).(-14).25=280.25=7000\)
\(c)40.(-30).12=-1200.12=-14400\)
\(2)\)
\(a)\)
\(-40.[(-15)+30)]\)
\(=-40.15\)
\(=-600\)
\(b)\)
\(-5 . [(-27) - (-7)]\)
\(=-5 . [(-27)+7]\)
\(=-5 . (-20)\)
\(=100\)
\(c)\)
\(-10 . [(-28) + (-22) - 10]\)
\(=-10 . [-50 - 10]\)
\(=-10.(-60)\)
\(=600\)
\(122+\left(-22\right)+\left(-1\right)+25.4\)
\(=122-22-1+100\)
\(=199\)
`122+(-22)+(-1)+25xx4`
`=122-22-1+100`
`=100-1+100`
`=100+100-1`
`=200-1`
`=199`