Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(=\left(x-3y\right)\left(x-y\right)-\left(x-3y\right)=\left(x-3y\right)\left(x-y-1\right)\)
4: \(=6x^2-4xy+3xy-2y^2+3x-2y\)
\(=\left(3x-2y\right)\left(2x+y\right)+3x-2y=\left(3x-2y\right)\left(2x+y+1\right)\)
Bài 2:
a: Để \(\dfrac{4}{x+2}>0\) thì x+2>0
hay x>-2
b: Để \(\dfrac{3x+2}{-4}>0\) thì 3x+2<0
hay x<-2/3
Tính giá trị của $x+y-2=0$ là sao nhỉ? $x+y-2=0$ sẵn rồi mà bạn?
a/ \(A=xy-4y-5x+20\)
\(=x\left(y-5\right)-4\left(y-5\right)\)
\(=\left(x-4\right)\left(y-5\right)\)
Thay \(x=14;y=5,5\) vào biểu thức A ta có :
\(A=\left(14-4\right)\left(5,5-5\right)\)
\(=10.0,5=5\)
Vậy...
b/ \(B=xyz-\left(xy+yz+zx\right)+x+y+z-1\)
\(=xyz-xy-yz-zx+x+y+z-1\)
\(=\left(xyz-xy\right)-\left(yz-y\right)-\left(zx-x\right)+\left(z-1\right)\)
\(=xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(z-1\right)\)
\(=\left(z-1\right)\left(xy-y-x+1\right)\)
\(=\left(z-1\right)\left[y\left(x-1\right)-\left(x-1\right)\right]\)
\(=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)
Thay \(x=9,y=10,z=11\) vào biểu thức B ta có :
\(B=\left(9-1\right)\left(10-1\right)\left(11-1\right)\)
\(=720\)
Vậy....
c/ \(C=x^3-x^2y-xy^2+y^3\)
\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)
\(=\left(x-y\right)^2\left(x+y\right)\)
Thay \(x=5,75,y=4,25\) vào biểu thức C ta có :
\(C=\left(5,75-5,25\right)^2\left(5,75+5,25\right)=11,25\)
Vậy..
a) Ta có: \(A=\left(x^3-x^2y+xy^2-y^3\right)\left(x+y\right)\)
\(=x^4+x^3y-x^3y-x^2y^2+x^2y^2+xy^3-xy^3-y^4\)
\(=x^4-y^4\)
Thay x=2 và \(y=-\frac{1}{2}\) vào biểu thức \(A=x^4-y^4\), ta được:
\(A=2^4-\left(-\frac{1}{2}\right)^4\)
\(=16-\frac{1}{16}\)
\(=\frac{255}{16}\)
Vậy: \(\frac{255}{16}\) là giá trị của biểu thức \(A=\left(x^3-x^2y+xy^2-y^3\right)\left(x+y\right)\) tại x=2 và \(y=-\frac{1}{2}\)
b) Ta có: \(B=\left(a-b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\)
\(=a^5+a^4b+a^3b^2+a^2b^3+ab^4-a^4b-a^3b^2-a^2b^3-ab^4-b^5\)
\(=a^5-b^5\)
Thay a=3 và b=-2 vào biểu thức \(B=a^5-b^5\), ta được:
\(B=3^5-\left(-2\right)^5\)
\(=243-\left(-32\right)\)
\(=243+32=275\)
Vậy: 275 là giá trị của biểu thức \(B=\left(a-b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\) tại a=3 và b=-2
c) Ta có: \(C=\left(x^2-2xy+2y^2\right)\left(x^2+y^2\right)+2x^3-3x^2y^2+2xy^3\)
\(=x^4+x^2y^2-2x^3y-2xy^3+2x^2y^2+2y^4+2x^3-3x^2y^2+2xy^3\)
\(=x^4-2x^3y+2y^4+2x^3\)
Thay \(x=y=\frac{-1}{2}\) vào biểu thức \(C=x^4-2x^3y+2y^4+2x^3\), ta được:
\(C=\left(-\frac{1}{2}\right)^4-2\cdot\left(-\frac{1}{2}\right)^3\cdot\frac{-1}{2}+2\cdot\left(-\frac{1}{2}\right)^4+2\cdot\left(-\frac{1}{2}\right)^3\)
\(=\frac{1}{16}-2\cdot\frac{-1}{8}\cdot\frac{-1}{2}+2\cdot\frac{1}{16}+2\cdot\frac{-1}{8}\)
\(=\frac{1}{16}-\frac{1}{8}+\frac{1}{8}-\frac{1}{4}\)
\(=\frac{1}{16}-\frac{1}{4}=\frac{1}{16}-\frac{4}{16}=\frac{-3}{16}\)
Vậy: \(-\frac{3}{16}\) là giá trị của biểu thức \(C=\left(x^2-2xy+2y^2\right)\left(x^2+y^2\right)+2x^3-3x^2y^2+2xy^3\) tại \(x=y=\frac{-1}{2}\)
\(\dfrac{5x+y^2}{x^2y}-\dfrac{5y+x^2}{xy^2}\)
\(=\dfrac{y\left(5x+y^2\right)}{x^2y^2}-\dfrac{x\left(5y-x^2\right)}{x^2y^2}\)
\(=\dfrac{5xy+y^3}{x^2y^2}-\dfrac{5xy+x^3}{x^2y^2}\)
\(=\dfrac{5xy+y^3-5xy+x^3}{x^2y^2}\)
\(=\dfrac{\left(5xy-5xy\right)+x^3+y^3}{x^2y^2}\)
\(=\dfrac{x^3+y^3}{x^2y^2}\)