K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 8 2023

Tính giá trị của $x+y-2=0$ là sao nhỉ? $x+y-2=0$ sẵn rồi mà bạn?

15 tháng 8 2023

à bn ơi đề bị sai ạ x+y-2 th ạ

15 tháng 8 2023

x/y = 2/5 ⇒ x/2 = y/5

⇒ x/5 = 2y/10

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/2 = 2y/10 = (x + 2y)/(2 + 10) = 36/12 = 3

x/2 = 3 ⇒ x = 2 . 3 = 6

y/5 = 3 ⇒ y = 5 . 3 = 15

Vậy x = 6; y = 10

15 tháng 8 2023

cảm ơn bạn nhiều ạyeu

a) Ta có: \(4\left(2-x\right)^2+xy-2y\)

\(=4\left(x-2\right)^2+y\left(x-2\right)\)

\(=\left(x-2\right)\left[4\left(x-2\right)+y\right]\)

\(=\left(x-2\right)\left(4x-8+y\right)\)

b) Ta có: \(3a^2x-3a^2y+abx-aby\)

\(=3a^2\left(x-y\right)+ab\left(x-y\right)\)

\(=\left(x-y\right)\left(3a^2+ab\right)\)

\(=a\left(x-y\right)\left(3a+b\right)\)

c) Ta có: \(x\left(x-y\right)^3-y\left(y-x\right)^2-y^2\left(x-y\right)\)

\(=x\left(x-y\right)^3-y\left(x-y\right)^2-y^2\left(x-y\right)\)

\(=\left(x-y\right)\left[x\left(x-y\right)^2-y\left(x-y\right)-y^2\right]\)

\(=\left(x-y\right)\left[x\left(x^2-2xy+y^2\right)-yx+y^2-y^2\right]\)

\(=\left(x-y\right)\left(x^3-2x^2y+xy^2-xy\right)\)

d) Ta có: \(2ax^3+6ax^2+6ax+18a\)

\(=2ax^2\left(x+3\right)+6a\left(x+3\right)\)

\(=\left(x+3\right)\left(2ax^3+6a\right)\)

\(=2a\left(x+3\right)\left(x^3+3\right)\)

e) Ta có: \(x^2y-xy^2-3x+3y\)

\(=xy\left(x-y\right)-3\left(x-y\right)\)

\(=\left(x-y\right)\left(xy-3\right)\)

26 tháng 11 2016

bạn cảm ơn ai vay có bn ấy có giup bn làm đau

26 tháng 11 2016

mk chua hok den nen ko co bit lam

8 tháng 12 2019

A = 3x ( x- 2x + 3) - x2 ( 3x - 2 ) + 5 ( x- x ) 

A = 3x3 - 6x2 + 9x - 3x3 + 2x2 + 5x2 - 5x

A = ( 3x- 3x) - ( 6x2 - 2x2 - 5x) + ( 9x - 5x )

A = x

8 tháng 12 2019

Làm tiếp nhé lúc nãy bị lỗi

A = x2 - 4x

Thay x = 5 vào A ta được

A = 52 - 4 . 5 = 5

2 tháng 1 2017

b1:

x-y=5->x=y+5

->x-3y/5-2y=y+5-3y/5-2y=5-2y5-2y=1

->đpcm

16 tháng 8 2023

ko

16 tháng 8 2023

tên bạn kì v

16 tháng 8 2023

\(D=-x^2-y^2+xy+2x+2y\)

\(\Rightarrow D=-\dfrac{x^2}{2}+xy-\dfrac{y^2}{2}-\dfrac{x^2}{2}+2x-\dfrac{y^2}{2}+2y\)

\(\Rightarrow D=-\left(\dfrac{x^2}{2}-xy+\dfrac{y^2}{2}\right)-\left(\dfrac{x^2}{2}-2x\right)-\left(\dfrac{y^2}{2}-2y\right)\)

\(\Rightarrow D=-\left(\dfrac{x^2}{2}-2.\dfrac{x}{\sqrt[]{2}}.\dfrac{y}{\sqrt[]{2}}+\dfrac{y^2}{2}\right)-\left(\dfrac{x^2}{2}-2.\dfrac{x}{\sqrt[]{2}}.\sqrt[]{2}+2\right)-\left(\dfrac{y^2}{2}-2.\dfrac{y}{\sqrt[]{2}}.\sqrt[]{2}+2\right)+2+2\)

\(\Rightarrow D=-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2+4\)

mà \(\left\{{}\begin{matrix}-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2\le0,\forall x;y\\-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2\le0,\forall x\\-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2\le0,\forall y\end{matrix}\right.\)

\(\Rightarrow D=-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2+4\le4\)

\(\Rightarrow GTLN\left(D\right)=4\left(tạix=y=2\right)\)