Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) -2(2x - 8) + 3(4 - 2x) = -72 - 5(3x - 7)
=> -4x + 18 + 12 - 6x = -72 - 15x + 35
=> -10x + 15x = -37 - 30
=> 5x = -37
=> x = -7,4
b) 3|2x2 - 7| = 33
=> |2x2 - 7| = 11
=> \(\orbr{\begin{cases}2x^2-7=11\\2x^2-7=-11\end{cases}}\)
=> \(\orbr{\begin{cases}2x^2=18\\2x^2=-4\left(loại\right)\end{cases}}\)
=> \(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
b)
\(3\left(2x^2-7\right)=33\)
\(\Leftrightarrow2x^2-7=11\)
\(\Leftrightarrow2x^2=18\)
\(\Leftrightarrow x^2=9\)
\(\Leftrightarrow x=\pm3\)
a) -2(2x - 8) + 3(4 - 2x) = -72 - 5(3x - 7)
=> -4x + 16 + 12 - 6x = -72 - 15x + 35
=> -10x + 28 = -37 - 15x
=> -10x + 15x = -37 - 28
=> 5x = -65
=> x = -65 : 5
=> x = -13
b) 3(2x2 - 7) = 33
=> 2x2 - 7 = 33 : 3
=> 2x2 - 7 = 11
=> 2x2 = 11 + 7
=> 2x2 = 18
=> x2 = 18 : 2
=> x2 = 9
=> \(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Vậy ...
-2(2x-8)+3(4-2x)=-72-5(3x-7)
-2.2x-(-2).8+3.4-3.2x=-72-5.3x+5.7
-4x+16+12-6x=-72-15x+35
-4x-6x+15x=-72+35-16-12
5x=-65
x=-65:5
x=-13
\(-2\left(2x-8\right)+3\left(4-2x\right)=-72-5\left(3x-7\right)\)
\(\Leftrightarrow-4x-16+12-6x=-72-15x+35\)
\(\Leftrightarrow-10x-4=-37-15x\)
\(\Leftrightarrow-10x+15x=-37+4\)
\(\Leftrightarrow5x=-33\)
\(\Leftrightarrow x=\frac{-33}{5}\)
Câu 1:
a) 2(x-3)-3(x-5)=4(3-x)-18
<=> 3x-6-3x+15-12+4x+18=0
<=> 4x+15=0
<=> 4x=-15
<=> x=-15/4
b) -2(2x-8)+3(4-2x)=-57-5(3x-7)
<=> -4x+16+12-6x+57+15x-35=0
<=> -5x+50=0
<=> -5x=-50
<=> x=10
c) 3|2x2-7|=33
<=> |2x2-7|=11
<=> \(\orbr{\begin{cases}2x^2-7=11\\2x^2-7=-11\end{cases}\Leftrightarrow\orbr{\begin{cases}2x^2=18\\2x^2=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2=9\\x^2=-2\end{cases}\Leftrightarrow}x=\pm3}\)
d) có 9x+17=3(3x+2)+11
=> 11 chia hết cho 3x+2
=> 3x+2 thuộc Ư (11)={-11;-1;1;11}
ta có bảng
3x+2 | -11 | -1 | 1 | 11 |
x | -13/3 | -1 | -1/3 | 3 |
Câu 2:
xy-5x+y=17
<=> x(y-5)+(y-5)=12
<=> (y-5)(x+5)=12
=> y-5; x+5 \(\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
lập bảng tương tự câu 1
1. \(6x^3-8=40\\ 6x^3=48\\ x^3=8\\ \Rightarrow x=2\)Vậy x = 2
2. \(4x^5+15=47\\ 4x^5=32\\ x^5=8\\ \Rightarrow x\in\varnothing\left(\text{vì }x\in N\right)\)Vậy x ∈ ∅
3. \(2x^3-4=12\\ 2x^3=16\\ x^3=8\\ \Rightarrow x=2\)Vậy x = 2
4. \(5x^3-5=0\\ 5x^3=5\\ x^3=1\\ \Rightarrow x=1\)Vậy x = 1
5. \(\left(x-5\right)^{2016}=\left(x-5\right)^{2018}\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\x-5=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)Vậy \(x\in\left\{5;6\right\}\)
6. \(\left(3x-2\right)^{20}=\left(3x-1\right)^{20}\\ \Rightarrow3x-2=3x-1\\ 3x-3x=2-1\\ 0=1\left(\text{vô lí}\right)\)Vậy x ∈ ∅
7. \(\left(3x-1\right)^{10}=\left(3x-1\right)^{20}\\ \left(3x-1\right)^{10}=\left[\left(3x-1\right)^2\right]^{10}\\ \Rightarrow\left(3x-1\right)^2=3x-1\\ \left(3x-1\right)^2-\left(3x-1\right)=0\\ \left(3x-1\right)\left[\left(3x-1\right)-1\right]=0\\ \left(3x-1\right)\left(3x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x-1=0\\3x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x=1\\3x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\left(\text{loại vì }x\in N\right)\\x=\frac{2}{3}\left(\text{loại vì }x\in N\right)\end{matrix}\right.\)Vậy x ∈ ∅
8. \(\left(2x-1\right)^{50}=2x-1\\ \left(2x-1\right)^{50}-\left(2x-1\right)=0\\ \left(2x-1\right)\left[\left(2x-1\right)^{49}-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}2x-1=0\\\left(2x-1\right)^{49}=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=1\\2x-1=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\left(\text{loại vì }x\in N\right)\\x=1\left(t/m\right)\end{matrix}\right.\)Vậy x = 1
9. \(\left(\frac{x}{3}-5\right)^{2000}=\left(\frac{x}{3}-5\right)^{2008}\\ \left(\frac{x}{3}-5\right)^{2008}-\left(\frac{x}{3}-5\right)^{2000}=0\\ \left(\frac{x}{3}-5\right)^{2000}\left[\left(\frac{x}{3}-5\right)^8-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}\left(\frac{x}{3}-5\right)^{2000}=0\\\left(\frac{x}{3}-5\right)^8=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\frac{x}{3}-5=0\\\frac{x}{3}-5=1\\\frac{x}{3}-5=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\frac{x}{3}=5\\\frac{x}{3}=6\\\frac{x}{3}=4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\cdot3=15\\x=6\cdot3=18\\x=4\cdot3=12\end{matrix}\right.\)Vậy \(x\in\left\{15;18;12\right\}\)
\(1.6x^3-8=40\\ \Leftrightarrow6x^3=48\\ \Leftrightarrow x^3=8\Leftrightarrow x^3=2^3=\left(-2\right)^3\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{2;-2\right\}\)
\(2.4x^3+15=47\) (T nghĩ đề là mũ 3)
\(\Leftrightarrow4x^3=32\Leftrightarrow x^3=8=2^3=\left(-2\right)^3\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{2;-2\right\}\)
Câu 3, 4 tương tự nhé.
Bài giải
a, \(-2\left(2x-8\right)+3\left(4-2x\right)=-72-5\left(3x-7\right)\)
\(-4x+8+12-6x=-72-15x+7\)
\(-10x+20=-65-15x\)
\(-10x+15x=-65-20\)
\(5x=-85\)
\(x=-85\text{ : }5\)
\(x=-17\)
b, \(3\left|2x^2-7\right|=33\)
\(\left|2x^2-7\right|=33\text{ : }3\)
\(\left|2x^2-7\right|=11\)
\(\Rightarrow\orbr{\begin{cases}2x^2-7=-11\\2x^2-7=11\end{cases}}\Rightarrow\orbr{\begin{cases}2x^2=-4\text{ ( loại ) }\\2x^2=18\end{cases}}\Rightarrow\text{ }x^2=9\text{ }\Rightarrow\text{ }x=\pm3\)
\(\Rightarrow\text{ }x=\pm3\)