Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(f\left(x\right)=-x^{15}+8x^{14}-8x^{13}+...-8x-5\)
Ta xét \(x=7\Leftrightarrow x+1=8\)
Khi đó :
\(f\left(7\right)=-x^{15}+x^{14}\left(x+1\right)-x^{13}\left(x+1\right)+...-x\left(x+1\right)-5\)
\(f\left(7\right)=-x^{15}+x^{15}+x^{14}-x^{14}-x^{13}+...-x^2-x-5\)
\(f\left(7\right)=-x-5\)
\(f\left(7\right)=-7-5\)
\(f\left(7\right)=-12\)
Vậy...
a: =>7(x-5)>0
=>x-5>0
=>x>5
b: =>x-1 thuộc {1;-1;11;-11}
=>x thuộc {2;0;12;-10}
c: =>x+1+7 chia hết cho x+1
=>x+1 thuộc {1;-1;7;-7}
=>x thuộc {0;-2;6;-8}
d: =>(x+2)(x-5)<0
=>-2<x<5
\(\dfrac{1}{2}-\dfrac{5}{12}x=\dfrac{2}{3}\)
\(\dfrac{5}{12}x=\dfrac{1}{2}-\dfrac{2}{3}=\dfrac{3}{6}-\dfrac{4}{6}\)
\(\dfrac{5}{12}x=\dfrac{-1}{6}\)
\(x=\dfrac{-1}{6}:\dfrac{5}{12}=\dfrac{-1}{6}.\dfrac{12}{5}\)
\(x=\dfrac{-2}{5}\)
(x+1)+(x+2)+(x+3)=4x
x+1+x+2+x+3=4x
(x+x+x)+(1+2+3)=4x
x*3+6=4x
6=1*x(bớt cả hai vế đi 3*x)
x=6/1(Tìm thừa số)
x=6
|x+1| + |x+2| + |x+3| + |x+4| = 5x - 1
Ta có \(\left\{{}\begin{matrix}\left|x+1\right|\ge0\\\left|x+2\right|\ge0\\\left|x+3\right|\ge0\\\left|x+4\right|\ge0\end{matrix}\right.\forall x\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|\ge0\forall x\)
\(\Rightarrow5x-1\ge0\)
\(\Rightarrow5x\ge1\)
\(\Rightarrow x\ge\frac{1}{5}>0\)
Khi đó x+ 4 > x+ 3 > x+2 > x+1 > 0
\(\Rightarrow\left\{{}\begin{matrix}\left|x+1\right|=x+1\\\left|x+2\right|=x+2\\\left|x+3\right|=x+3\\\left|x+4\right|=x+4\end{matrix}\right.\)\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|=x+1+x+2+x+3+x+4=4x+\left(1+2+3+4\right)=4x+10\)=> 4x + 10 = 5x - 1
=> 10 + 1 = 5x - 4x
=> x = 11
Vậy x = 11 thỏa mãn đề bài
Học tốt
Để B có nghiệm
=> B = 0
=> 2x4 - 8x2 = 0
=> 2x2(x2 - 4) = 0
=> \(\orbr{\begin{cases}2x^2=0\\x^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
Vậy x \(\in\left\{0;2;-2\right\}\)là nghiệm của đa thức B
\(x\left(x-\frac{1}{3}\right)< 0\)
Để \(x\left(x-\frac{1}{3}\right)< 0\)thì x và \(x-\frac{1}{3}\)trái dấu nhau
Thấy \(x>x-\frac{1}{3}\)\(\Rightarrow\hept{\begin{cases}x>0\\x-\frac{1}{3}< 0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x< \frac{1}{3}\end{cases}\Leftrightarrow}0< x< \frac{1}{3}}\)
`Answer:`
\(\left(2\left|x\right|+1\right)\left(8x^3+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2\left|x\right|+1=0\\8x^3+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2\left|x\right|=-1\\8x^3=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left|x\right|=-\frac{1}{2}\\x^3=-\frac{1}{8}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left|x\right|=-\frac{1}{2}\\x^3=\left(-\frac{1}{2}\right)^3\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left|x\right|=-\frac{1}{2}\text{(Loại)}\\x=-\frac{1}{2}\end{cases}}\)