Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+1)+(x+2)+...+(x+98)+(x+99)=9900
x+x+x+x+...x+(1+2+...+98+99)=9900
50x+2500=9900
=>50x=7400
vậy x=148
x + 1 + x + 2 + ... + x + 98 + x + 99 = 9900
( x + x + ... + x ) + ( 1 + 2 + ... + 98 + 99 ) = 9900
Số số hạng là : ( 99 - 1 ) : 1 + 1 = 99 ( số )
Tổng là : ( 99 + 1 ) x 99 : 2 = 4950
99x + 4950 = 9900
99x = 4950
x = 50
Vậy,......
a ) 37 x 27 + 63 x 27
= ( 37 + 63 ) x 27
= 100 x 27
= 2700
b ) 1 + 2 + 3 + 4 + ... + 97 + 98 + 99
= ( 99 - 1 ) : 1 + 1
= 99 x ( 99 + 1 ) : 2
= 4950
c ) 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10
= ( 1 + 9 ) + ( 2 + 8 ) + ( 3 + 7 ) + ( 4 + 6 ) + ( 5 + 10 )
= 10 + 10 + 10 + 10 + 15
= 55
\(\left(x+1\right)+\left(x+2\right)+...+\left(x+99\right)=9900\)
\(\Leftrightarrow99x+\left(\frac{99-1}{1}+1\right)=9900\)
\(\Leftrightarrow99x=9900-99\)
\(\Leftrightarrow x=99\)
k mk nha
(x + 1) +( x + 2) + ... + (x + 99 )= 9900
=>99x +(99-1/1 + 1 )=9900
=>99x=9900-99
=>x=90
ấn chậm quá
@@
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101 A = 99x100x101 : 3 A = 333300 tích cho mình với, ko chat àh
(1-2+3-4+.....-98+99)x(2013x6-2013-2013x5)
=(1-2+3-4+....-98+99)x[ 2013x(6-1-5)]
= (1-2+3-4+....-98+99)x(2013x0)
= (1-2+3-4+....-98+99)x0 = 0
= 1/1x2 + 1/2x3 + 1/3x4 ...... +1/9x10
= 1-1/2+1/2-1/3+1/3-1/4+........+1/9-1/10
=1-1/10=9/10
đặt A=1/1 x 1/2 + 1/2 x 1/3 + 1/3 + 1/4 + .......... + 1/9 x 1/10
\(A=\frac{1}{1}\cdot\frac{1}{2}+\frac{1}{2}\cdot\frac{1}{3}+...+\frac{1}{9}\cdot\frac{1}{10}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
đặt B=2/1 x 2 + 2/2 x 3 + 2/3 x4 + .............. + 2/98 x 99 + 2/99 x 100
\(B=2\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=2\left(1-\frac{1}{100}\right)\)
\(=2\times\frac{99}{100}\)
\(=\frac{99}{50}\)
( x + 1 ) + ( x + 2 ) + ... + ( x + 98 ) + ( x + 99 ) = 9900
( x + x + ... + x + x ) + ( 1 + 2 + ... + 98 + 99 ) = 9900
99.x + \(\frac{\left(99+1\right).99}{2}\)= 9900
99.x + 4950 = 9900
99.x = 9900 - 4950
99.x = 4950
x = 4950 : 99
x = 50
2 . x + 5 . x - 3 . x = 125 : 4 + 27 : 3
x . ( 2 + 5 - 3 ) = 31,25 + 9
x . 4 = 40,25
x = 40,25 : 4
x = 10,0625