Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10³ + 2¹⁵
= 1000 + 32768
= 33768
Mà 33768 : 33 = 1023 (dư 9)
Em xem lại đề
Gọi số thứ nhất là và số thứ 2 là b, theo đề bài ta có:
\(\frac{2}{3}a=\frac{3}{4}b=>\frac{a}{b}=\frac{\frac{3}{4}}{\frac{2}{3}}=\frac{9}{8}=>\frac{a^2}{b^2}=\frac{81}{64}=>\frac{a^2}{81}=\frac{b^2}{64}\); \(a^2-b^2=68\)và \(a,b\in N\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a^2}{81}=\frac{b^2}{64}=\frac{a^2-b^2}{81-64}=\frac{68}{17}=4\)
=> \(\frac{a^2}{81}=4=>a^2=324=>a=18\)
=> \(\frac{b^2}{64}=4=>b^2=256=>b=16\)
Vậy...
a. f(\(\dfrac{-1}{2}\)) = \(4.\left(\dfrac{-1}{2}\right)^2+3.\left(\dfrac{-1}{2}\right)-2\)
= \(4.\dfrac{1}{4}-\left(\dfrac{-3}{2}\right)-\dfrac{4}{2}\)
= \(\dfrac{2}{2}+\dfrac{3}{2}-\dfrac{4}{2}\)
= \(\dfrac{1}{2}\)
A) \(...=\left(7y-3\right)^3\)
B) \(...=\left(4y-3\right)^3\)
C) \(...=x^4+2x^2+1-\left(y^2+2y+1\right)\)
\(=\left(x^2+1\right)^2-\left(y+1\right)^2\)
D) \(...=x^2-6x+9-\left(y^2-10y+25\right)\)
\(=\left(x-3\right)^2-\left(y-5\right)^2\)
\(\dfrac{9}{27}=\dfrac{\dfrac{3}{2}}{\dfrac{9}{2}}\\ \dfrac{9}{\dfrac{3}{2}}=\dfrac{27}{\dfrac{9}{2}}\\ \dfrac{27}{9}=\dfrac{\dfrac{9}{2}}{\dfrac{3}{2}}\\ \dfrac{\dfrac{9}{2}}{27}=\dfrac{\dfrac{3}{2}}{9}\)
TL:
= 19683 + 4 + 16 + 27 + 16
= 19687 + 32 + 27
= 19746
_HT_
TL:
= 19746
+HT+