Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(3^3+3^4)+(3^5+3^6)+...+(3^15+3^16) = 3^3(1+3)+3^5(1+3) +..+3^15(1+3)= 3^3.4+3^5.4+..+3^15.4 =4.(3^3+3^5+..+3^15)
=> Ạ chia hết cho 4
A=3^3+3^4+3^5+...+3^14+3^15+3^16
A=(3^3+3^4)+(3^5+3^6)+...+(3^15+3^16)
A=3^3(1+3)+3^5(1+3)+...+3^15(1+3)
A=3^3.4+3^5.4+...+3^15.4
A=(3^3+3^5+...+3^15)4
=>A chia hết cho 4
Vậy A=3^3+3^4+3^5+...+3^14+3^15+3^16 chia hết cho 4
M=33.(1+3)+35.(1+3)+........+315.(1+3)
M=4.(33+35+..............+315)
M có thừa số 4 suy ra M chia hết cho 4
\(M=3^3+3^4+...+3^{16}\)
\(M=\left(3^3+3^4\right)+\left(3^5+3^6\right)+...+\left(3^{15}+3^{16}\right)\)
\(M=3^3\left(1+3\right)+3^5\left(1+5\right)+...+3^{59}\left(1+3\right)\)
\(M=4\left(3^3+3^5+...+3^{59}\right)⋮4\)
a) \(4^{13}+4^{14}+4^{15}+4^{16}=4^{13}\left(1+4\right)+4^{14}\left(1+4\right)=4^{13}.5+4^{14}.5=5\left(4^{13}+4^{14}\right)⋮5\Rightarrow dpcm\)
c) \(2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}\)
\(=2^{10}\left(1+2+2^2\right)+2^{13}\left(1+2+2^2\right)\)
\(=2^{10}.7+2^{13}.7=7\left(2^{10}+2^{13}\right)⋮7\Rightarrow dpcm\)
Câu c bạn xem lại đê
Đặt \(A=3+3^2+3^3+...+3^{15}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{13}+3^{14}+3^{15}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{13}\left(1+3+3^2\right)\)
\(=3.13+3^4.13+...+3^{13}.13\)
Vì \(13⋮13\)nên \(3.13+3^4.13+...+3^{13}.13⋮13\)
hay \(A⋮13\)
Vậy \(A⋮13.\)
A=3+3^2+3^3+......+3^13+3^14+3^15
=(3+3^2+3^3)+......+(3^13+3^14+3^15)
=3(1+3+3^2)+.......+3^13(1+3+3^2)
=(3+....+3^13)+(1+3+3^2)
=13(3+.....+3^13) chia hết cho 13
a) ta có A= 2+2^2+2^3+2^4+2^5+2^6
=2*(1+2+2^2+2^3+2^4+2^5)
=2*63 =2*21*3 CHIA HẾT CHO 3( vì có một thứa số 3 trong tích )
còn lại bạn làm tương tự nha