Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}\times\left(x-\frac{4}{5}\right)+\frac{3}{4}x=\frac{5}{12}\)
\(\Leftrightarrow\frac{1}{2}x-\frac{2}{5}+\frac{3}{4}x=\frac{5}{12}\)
\(\Leftrightarrow\frac{1}{2}x+\frac{3}{4}x=\frac{5}{12}+\frac{2}{5}\)
\(\Leftrightarrow\frac{5}{4}x=\frac{49}{60}\)
\(\Leftrightarrow x=\frac{49}{75}\)
Vậy \(x=\frac{49}{75}\)
a) \(x+xy-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y-1=8-1\)
\(\Leftrightarrow x.\left(1+y\right)-\left(1+y\right)=7\)
\(\Leftrightarrow\left(1+y\right).\left(x-1\right)=7\)
Lập bảng tìm tiếp
b) Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(2y-6\right)^4\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(2y-6\right)^4\ge0\forall x\)
Do đó \(\left(x+2\right)^2+\left(2y-6\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(2y-6\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ...
\(\left(x-2\right)^5-\left(x-2\right)^3=0\)
\(\Rightarrow\left(x-2\right)^3\left(\left(x-2\right)^2-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\\left(x-2\right)^2-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\\left(x-2\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x-2=1\\x-2=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=3\\x=1\end{matrix}\right.\)
Vậy \(x\in\left\{1;2;3\right\}\)
⇒ ( x - 2)3 . (x - 2)2 - (x - 2)3 . 1 = 0 ⇒ ( x - 2)3 . [( x - 2)2 - 1] = 0
a) [ 3x-1] + 4x - 3 = 7
3x - 1 + 4x = 7 + 3 = 10
( 3 + 4 )x - 1 =10
7x - 1 = 10
7x=11
x=11/7
Câu tiếp theo làm tương tự nhé =))
) [ 3x-1] + 4x - 3 = 7
3x - 1 + 4x = 7 + 3 = 10
( 3 + 4 )x - 1 =10
7x - 1 = 10
7x=11
x=11/7
\(a,\left(x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
vậy_____
TL
x - \(\frac{4}{5}\)=\(\frac{2}{3}\)
x =\(\frac{2}{3}+\frac{4}{5}\)
x =\(\frac{22}{15}\)
3x-\(\frac{1}{2}=\frac{4}{3}\)
3x \(=\frac{4}{3}+\frac{1}{2}\)
3x \(=\frac{11}{6}\)
x = \(\frac{11}{6}:3\)
x =\(\frac{11}{18}\)
nha bn
HT
\(\left(3x+\dfrac{3}{5}\right)\left(\left|x\right|-\dfrac{1}{4}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x+\dfrac{3}{5}=0\\\left|x\right|=\dfrac{1}{4}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=\dfrac{1}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{-\dfrac{1}{5};\dfrac{1}{4};-\dfrac{1}{4}\right\}\)
⇒\(\left\{{}\begin{matrix}3x+\dfrac{3}{5}=0\\\left|x\right|-\dfrac{1}{4}=0\end{matrix}\right.\) ⇒\(\left\{{}\begin{matrix}3x=0-\dfrac{3}{5}=-\dfrac{3}{5}\\\left|x\right|=0+\dfrac{1}{4}=\dfrac{1}{4}\end{matrix}\right.\)
⇒\(\left\{{}\begin{matrix}x=-\dfrac{3}{5}:3=-\dfrac{1}{5}\\x=\dfrac{1}{4},-\dfrac{1}{4}\end{matrix}\right.\)