Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
Mình nghĩ \(2x-5y+5xy=14\) chứ c nhỉ ;-;?
`=> 2x - 5y + 5xy = 12 + 2`
`=> 2x - 2 - 5y + 5xy = 12`
`=> (2x - 2) - (5y - 5xy) = 12`
`=> 2(x - 1) - 5y(1 - x) = 12`
`=> 2(x - 1) + 5y(x - 1) = 12`
`=> (2+5y)(x - 1) = 12`
`=> (2+5y)(x-1) \in \text {Ư(12)} =`\(\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Để `2+5y \in \text {Ư(12)}` thì `(2+5y) \in {2; -3; 12}`
Ta có bảng sau:
\(2+5y\) | `2` | `-3` | `12` |
`x-1` | `6` | `-4` | `1` |
\(x\) | `0` | `-1` | `2` |
\(y\) | `7` | `-3` | `2` |
Vậy, ta có các cặp số nguyên thỏa mãn \(\left\{0;7\right\};\left\{-1;-3\right\};\left\{2;2\right\}.\)
\(B=x^5y^2+\dfrac{1}{2}x^5y^2-6xy+1=\dfrac{3}{2}x^5y^2-6xy+1\)
\(2x-5y+5xy=14\)
\(\Leftrightarrow2x-2+5y\left(x-1\right)=12\)
\(\Leftrightarrow\left(x-1\right)\left(5y+2\right)=12\)
mà \(x,y\)nguyên nên \(5y+2\)chia cho \(5\)dư \(2\).
Ta có bảng giá trị:
5y+2 | -3 | 2 | 12 |
x-1 | -4 | 6 | 1 |
y | -1 | 0 | 2 |
x | -3 | 7 | 2 |
Vậy phương trình có các nghiệm là: \(\left(-3,-1\right),\left(7,0\right),\left(2,2\right)\).
2x - 5y + 5xy = 14
<=> 2x - 2 - 5y + 5xy = 12
<=> 2(x - 1) + 5y(x - 1) = 12
<=> (x - 1)(2 + 5y) = 12
=> (x - 1) và (2 + 5y) \(\in\)Ư(12)
Để (2 + 5y) \(\in\)Ư(12) mà y là số nguyên thì (2 + 5y) \(\in\){-3;12;2}
Khi đó (x - 1) \(\in\){-4;1;6}
Ta có bảng
x - 1 | -4 | 1 | 6 |
2 + 5y | -3 | 12 | 2 |
x | -3 | 2 | 7 |
y | -1 | 2 | 0 |
Vậy các cặp (x;y) thỏa mãn là (-3;-1) ; (2;2) ; (7;0)
giải
2x - 5y + 5xy = 2x - 5y ( x-1 )
= 2x - 2 - 5y(x-1 ) = 12
= (2 - 5y) (x-1) = 12
Sau đó tìm ước
<=> 5xy-5y=14-2x
<=> 5y(x-1)=-2(x-7)
=> 5y=\(\frac{-\left(2x-14\right)}{x-1}=-\frac{2x-2-12}{x-1}=-\frac{2\left(x-1\right)}{x-1}+\frac{12}{x-1}=-2+\frac{12}{x-1}\)
=> \(5y=-2+\frac{12}{x-1}\)
Để 5y là số nguyên => 12 chia hết cho (x-1) => x-1={-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
+/ x-1=-12 => x=-11; y=-3/5 (loại)
+/ x-1=-6 => x=-5; y=-4/5 (loại)
+/ x-1=-4 => x=-3; y=-1
+/ x-1=-3 => x=-2; y=-6/5 (loại)
+/ x-1=-2 => x=-1; y=-8/5 (loại)
+/ x-1=-1 => x=0; y=-14/5 (loại)
+/ x-1=1 => x=2; y=2
+/ x-1=2 => x=3; y=4/5 (loại)
+/ x-1=3 => x=4; y=2/5 (loại)
+/ x-1=4 => x=5; y=1/5 (loại)
+/ x-1=6 => x=7; y=0
+/ x-1=12 => x=13; y=-1/5 (loại)
=> Các cặp số x, y thỏa mãn là: (-3; -1); (2; 2); (7; 0)
\(2x-5y+5xy=14\)
\(\Rightarrow x\left(2+5y\right)-5y=14\)
\(\Rightarrow x\left(2+5y\right)-\left(5y+2\right)=12\)
\(\Rightarrow\left(x-1\right)\left(5y+2\right)=12\)
Ta có bảng sau:
...
\(5xy+5y+x=19\)
\(\Leftrightarrow5y\left(x+1\right)+\left(x+1\right)=20\)
\(\Leftrightarrow\left(5y+1\right)\left(x+1\right)=20=1.20=2.10=4.5=5.4=\)
\(10.2=20.1\)
Đến đây lập bảng và số âm cx tương tự