Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(27^7\div9^{10}\)
\(=\left(3^3\right)^7\div\left(3^2\right)^{10}\)
\(=3^{3\times7}\div3^{2\times10}\)
\(=3^{21}\div3^{20}\)
\(=3^1\)
\(=3\)
b) \(125^6\div25^7\)
\(=\left(5^3\right)^6\div\left(5^2\right)^7\)
\(=5^{3\times6}\div5^{2\times7}\)
\(=5^{18}\div5^{14}\)
\(=5^4\)
\(=625\)
c) \(5^{15}\div5^3\)
\(=5^{12}\)
\(=244140625\)
d) \(11^7\div11^3\)
\(=11^4\)
\(=14641\)
e) \(125\div5^2\)
\(=5^2\div5^2\)
\(=5^1\)
\(=5\)
g) \(169\div13^2\)
\(=13^2\div13^2\)
\(=13^1\)
\(=13\)
\(4^8.2^{20}=2^{16}.2^{20}=2^{36}\)
\(9^{12}.27^5.81^4=3^{24}.3^{15}.3^{16}=3^{55}\)
mk chỉnh đề
\(64^3.4^5.16^2=4^9.4^5.4^4=4^{18}\)
\(25^{20}.125^4=5^{40}.5^{12}=5^{52}\)
\(x^7.x^4.x^3=x^{14}\)
a) \(9^{20}=\left(3^2\right)^{20}=3^{40}\)
\(27^{13}=\left(3^3\right)^{13}=3^{39}\)
vi \(3^{39}< 3^{40}\) nen \(9^{20}>27^{13}\)
b) \(125^5=\left(5^3\right)^5=5^{15}\)
\(25^7=\left(5^2\right)^7=5^{14}\)
vi \(5^{15}>5^{14}\) nen \(125^5>27^7\)
bai 3:
the h hinh lap phuong la:
\(5^3=125\left(m^3\right)\)
canh tang len 3 lan: \(5.3=15\left(lan\right)\)
the h hinh lap phuong khi canh tang len 3 lan
\(15^3=3375\left(m^3\right)\)
the h tang so lan la: \(3375:125=27\left(lan\right)\)
dap so: \(27lan\)
Bài 2:
Bạn đưa về cùng cơ số rồi so sánh số mũ thôi!
Bài 3;
a) Thể tích hình lập phương là:
5 .5 . 5= 125 (m3)
Bài 1:
2\(x\) = 4
2\(^x\) = 22
\(x=2\)
Vậy \(x=2\)
Bài 2:
2\(^x\) = 8
2\(^x\) = 23
\(x=3\)
Vậy \(x=3\)
a) \(9^{21}.9^{33}=9^{21+33}=9^{54}\)
b) \(19^{11}.19.19=19^{11+1+1}=19^{13}\)
c) \(25^2.5^2.125=5^4.5^2.5^3=5^{4+2+3}=5^9\)
d) \(t^{2021}.t^2.\left(t^2\right)^2=t^{2021}.t^2.t^4=t^{2021+2+4}=t^{2027}\)
e) \(123^{14}:123^{13}=123^{14-13}=123\)
f) \(64^2:8^3=\left(8^2\right)^2:8^3=8^4:8^3=8^{4-3}=8=2^3\)
g) \(6^{10}:6^3:36=6^{10}:6^3:6^2=6^{10-3-2}=6^5\)
h) \(m^{20}:m^{10}.m^{10}=m^{20-10+10}=m^{20}\)
a, \(\frac{6^5\cdot27^2}{7^3\cdot9^5}=\frac{2^5\cdot3^5\cdot\left(3^3\right)^2}{7^3\cdot\left(3^2\right)^5}=\frac{2^5\cdot3^5\cdot3^6}{7^3\cdot3^{10}}=\frac{2^5\cdot3^{11}}{7^3\cdot3^{10}}=\frac{2^5\cdot3}{7^3}\)
b, \(\frac{12^7\cdot9^3}{8^5\cdot27^3}=\frac{3^7\cdot2^{12}\cdot3^6}{2^{15}\cdot3^9}=\frac{2^{12}\cdot3^{13}}{2^{15}\cdot3^9}=\frac{3^4}{2^3}\)
c, \(\frac{20^6\cdot8^2}{16^3\cdot25^3}=\frac{2^{12}\cdot5^6\cdot2^6}{2^{12}\cdot5^6}=2^6\)
so sánh à?
a)\(2^{300}=8^{100}\)
\(3^{200}=9^{100}\)
\(2^{300}< 3^{200}\)
b)\(125^5=\left(25.5\right)^5=\left(5.5.5\right)^5=5^{15}\)
\(25^7=\left(5.5\right)^7=5^{14}\)
\(125^5>25^7\)
c)\(9^{20}=\left(3.3\right)^{20}=3^{40}\)
\(27^{13}=\left(3.3.3\right)^{13}=3^{39}\)
\(9^{20}>27^{13}\)