Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
ta có:\(\hept{\begin{cases}a.b=18\\a+b=11\end{cases}}\)
pt (1) \(\Leftrightarrow b\left(11-b\right)=18\)
\(\Rightarrow11b-b^2=18\)
\(\Rightarrow-\left(11b+b^2\right)=18\)
\(\Rightarrow b^2+11b=18\)
\(\Rightarrow b^2+11b+18=0\)
\(\Rightarrow b^2+11b+22-4=0\)
\(\Rightarrow\left(b+11\right)-4=0\)
\(\Rightarrow\left(b+11+2\right).\left(b+11-2\right)=0\)
\(\Rightarrow\left(b+13\right).\left(b+9\right)=0\)
\(\Rightarrow\hept{\begin{cases}b=-13\Leftrightarrow a=2\\b=-9\Leftrightarrow a=-2\end{cases}}\)
Bài 2:
2)
P=-[(2x-6)2+/-5-y/-37]
Vi (2x-6)2 ≥0 , /-5-y/≥0 nên (2x-6)2+/-5-y/-37-37/ => P≤37
Dấu = xảu ra khi x=3 , y=-5
Vậy Max P=37 khi x=3 , y=-5
chúc bạn học tốt !
\(\dfrac{3}{5}x-\dfrac{1}{2}x=\dfrac{3}{2}-0\)
\(\left(\dfrac{3}{5}-\dfrac{1}{2}\right)x=\dfrac{3}{2}\)
\(\dfrac{1}{10}\cdot x=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}:\dfrac{1}{10}\)
\(x=15\)
\(\dfrac{3}{5x}-\dfrac{1}{2x}=\dfrac{3}{2-0}\)
\(\dfrac{3}{5x}+\dfrac{-1}{2x}=\dfrac{3}{2}\)
\(\dfrac{3}{5}+\dfrac{-1}{2}=\dfrac{3}{2}\cdot x\)
\(\dfrac{1}{10}=\dfrac{3}{2}\cdot x\)
\(\dfrac{3}{2}\cdot x=\dfrac{1}{10}\)
\(x=\dfrac{1}{10}\div\dfrac{3}{2}\)
\(x=\dfrac{2}{30}\)
\(x=\dfrac{1}{15}\)
a, 3 ( x+2 ) + 2 ( x-3 ) =10
3x + 6 + 2x - 6 = 10
5x = 10
x = 10 : 5
x = 2
b, 720 : ( 41 - ( 2x-5 )) = 40
720 : ( 41-2x + 5) = 40
720 : ( 46 - 2x ) = 40
46 - 2x = 720 : 40
46 - 2x = 18
2x = 46 - 18
2x = 28
x= 28 : 2
x = 14
Để \(\dfrac{11}{2x+3}\) nhận giá trị nguyên thì \(2x+3\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta có bảng sau:
\(2x+3\) | \(-11\) | \(-1\) | \(1\) | \(11\) |
\(2x\) | \(-14\) | \(-4\) | \(-2\) | \(8\) |
\(x\) | \(-7\) | \(-2\) | \(-1\) | \(4\) |
Vậy để \(\dfrac{11}{2x+3}\) nhận giá trị nguyên thì \(x\in\left\{-7;-2;-1;4\right\}\)
#Sahara |
Để \(\dfrac{11}{2x+3}\)là số nguyên khi:
2x+3ϵƯ(11)= {-1;1;-11;11}
Ta có bảng sau:
⇒x ϵ {-2;-1;-7;4}
\(xy+2x-y=4\)
\(\Leftrightarrow x\left(y+2\right)-y-2=2\)
\(\Leftrightarrow x\left(y+2\right)-\left(y+2\right)=2\)
\(\Leftrightarrow\left(x-1\right)\left(y+2\right)=2\)
\(TH1:\hept{\begin{cases}x-1=1\\y+2=2\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}}\)
\(TH2:\hept{\begin{cases}x-1=2\\y+2=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}}\)
\(TH3:\hept{\begin{cases}x-1=-1\\y+2=-2\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=-4\end{cases}}}\)
\(TH4\hept{\begin{cases}x-1=-2\\y+2=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=-3\end{cases}}}\)
Vậy\(\left(x;y\right)\in\left\{\left(2;0\right),\left(3;-1\right),\left(0;-4\right),\left(-1;-3\right)\right\}\)
41-(2x-5)=18 2x.4=128
(2x-5)=41-18 2x=128:4
2x-5=23 2x=32
2x=23+5 x=32:2
2x=28 x=16
x=28:2
x=14
a. 2 x - 5 = 41 - 18
2x - 5 = 23
2x = 23 + 5
2x = 28
x = 28 : 2
x = 14