K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 12 2018

Lời giải:

Bài này bạn chịu khó tìm điểm rơi rồi áp BĐT AM-GM vào thôi:

Áp dụng BĐT AM-GM:

\(\sqrt{ab}=\frac{1}{2}\sqrt{a.4b}\leq \frac{a+4b}{4}\)

\(\sqrt[3]{abc}=\frac{1}{4}\sqrt[3]{a.4b.16c}\leq \frac{a+4b+16c}{12}\)

Cộng theo vế:
\(\Rightarrow a+\sqrt{ab}+\sqrt[3]{abc}\leq a+\frac{a+4b}{4}+\frac{a+4b+16c}{12}=\frac{4}{3}(a+b+c)\)

\(a+\sqrt{ab}+\sqrt[3]{abc}=\frac{4}{3}\Rightarrow a+b+c\geq 1\)

Vậy \((a+b+c)_{\min}=1\)

NV
27 tháng 12 2022

\(\dfrac{4}{3}\le a+\sqrt{ab}+\sqrt[3]{abc}=a+\sqrt[]{\dfrac{a}{2}.2b}+\sqrt[3]{\dfrac{a}{4}.b.4c}\)

\(\le a+\dfrac{1}{2}\left(\dfrac{a}{2}+2b\right)+\dfrac{1}{3}\left(\dfrac{a}{4}+b+4c\right)=\dfrac{4}{3}\left(a+b+c\right)\)

\(\Rightarrow Q\ge1\)

\(Q_{min}=1\) khi \(\left(a;b;c\right)=\left(\dfrac{16}{21};\dfrac{4}{21};\dfrac{1}{21}\right)\)

AH
Akai Haruma
Giáo viên
5 tháng 10 2018

Bài 1:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{2ab}+\frac{1}{a^2+b^2}\geq \frac{4}{2ab+a^2+b^2}=\frac{4}{a+b)^2}=4(1)\)

Áp dụng BĐT AM-GM:

\(1=a+b\geq 2\sqrt{ab}\Rightarrow ab\leq \frac{1}{4}\Rightarrow \frac{3}{2ab}\geq 6(2)\)

\(a^4+b^4\geq \frac{(a^2+b^2)^2}{2}\geq \frac{(\frac{(a+b)^2}{2})^2}{2}=\frac{1}{8}\) \(\Rightarrow \frac{a^4+b^4}{2}\geq \frac{1}{16}(3)\)

Từ \((1);(2);(3)\Rightarrow P\geq 4+6+\frac{1}{16}=\frac{161}{16}\)

Vậy \(P_{\min}=\frac{161}{16}\). Dấu bằng xảy ra tại $a=b=0,5$

AH
Akai Haruma
Giáo viên
6 tháng 10 2018

Bài 2:
Áp dụng BĐT Cauchy-Schwarz:

\(2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)\geq 2. \frac{4}{x^2+y^2+2xy}=\frac{8}{(x+y)^2}=\frac{9}{2}\)

Áp dụng BĐT AM-GM:

\(\frac{80}{81xy}+5xy\geq 2\sqrt{\frac{80}{81}.5}=\frac{40}{9}\)

\(\frac{4}{3}=a+b\geq 2\sqrt{ab}\Rightarrow ab\leq \frac{4}{9}\Rightarrow \frac{1}{81ab}\geq \frac{1}{36}\)

Cộng những BĐT vừa cm được ở trên với nhau:

\(\Rightarrow A\geq \frac{9}{2}+\frac{40}{9}+\frac{1}{36}=\frac{323}{36}\)

Vậy \(A_{\min}=\frac{323}{36}\Leftrightarrow a=b=\frac{2}{3}\)

NV
1 tháng 2 2019

Do \(a,b,c>0\) nên theo quy tắc phân số: \(\dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\)

Tương tự: \(\dfrac{b}{b+c}< \dfrac{a+b}{a+b+c}\); \(\dfrac{c}{a+c}< \dfrac{b+c}{a+b+c}\)

\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}< \dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

Theo BĐT Cauchy: \(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\Leftrightarrow\dfrac{2}{a+b+c}\le\dfrac{1}{\sqrt{a\left(b+c\right)}}\)

\(\Leftrightarrow\dfrac{2a}{a+b+c}\le\sqrt{\dfrac{a}{b+c}}\)

Tương tự \(\dfrac{2b}{a+b+c}\le\sqrt{\dfrac{b}{a+c}}\); \(\dfrac{2c}{a+b+c}\le\sqrt{\dfrac{c}{a+b}}\)

(3 dấu = không thể đồng thời xảy ra, để chặt chẽ bạn có thể chia trường hợp)

Cộng vế với vế:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}>\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}< \sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}\)

NV
27 tháng 12 2020

\(\dfrac{4}{3}=a+2\sqrt{\dfrac{a}{4}.b}+\dfrac{1}{2}\sqrt[3]{\dfrac{a}{2}.2b.8c}\)

\(\dfrac{4}{3}\le a+\dfrac{a}{4}+b+\dfrac{1}{6}\left(\dfrac{a}{2}+2b+8c\right)=\dfrac{4}{3}\left(a+b+c\right)\)

\(\Rightarrow a+b+c\ge1\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{16}{21};\dfrac{4}{21};\dfrac{1}{21}\right)\)

1 tháng 1 2021

Anh ơi cho em hỏi làm sao để tách/tìm điểm rơi như thế này ạ?

sai đề không ?

7 tháng 2 2018

ko sai đề. mình vừa nghĩ ra rồi

P=\(a+\frac{1}{2}\sqrt{a.4b}+\frac{1}{4}\sqrt[3]{a.4b.16c} \le a+\frac {a+4b}{4}+\frac{a+4b+16c}{12}=\frac{4(a+b+c)}{3}=\frac{4}{3}\)

6 tháng 2 2021

cái kia là \(3\sqrt{\dfrac{1}{a}+\dfrac{9}{b}+\dfrac{25}{c}}\)

NV
7 tháng 2 2021

\(\left(a^2+\dfrac{b^2}{3}+\dfrac{c^2}{5}\right)\left(1+3+5\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow3\sqrt{a^2+\dfrac{b^2}{3}+\dfrac{c^2}{5}}\ge a+b+c\)

\(\Rightarrow P\ge\dfrac{2}{3}\left(a+b+c\right)+3\sqrt{\dfrac{1}{a}+\dfrac{3^2}{b}+\dfrac{5^2}{c}}\)

\(\Rightarrow P\ge\dfrac{2}{3}\left(a+b+c\right)+3\sqrt{\dfrac{\left(1+3+5\right)^2}{a+b+c}}=\dfrac{2}{3}\left(a+b+c\right)+\dfrac{27}{\sqrt{a+b+c}}\)

\(\Rightarrow P\ge\dfrac{1}{2}\left(a+b+c\right)+\dfrac{27}{2\sqrt{a+b+c}}+\dfrac{27}{2\sqrt{a+b+c}}+\dfrac{1}{6}\left(a+b+c\right)\)

\(\Rightarrow P\ge3\sqrt[3]{\dfrac{27^2\left(a+b+c\right)}{2^3\left(a+b+c\right)}}+\dfrac{1}{6}.9=15\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;3;5\right)\)