Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = \(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
\(\Rightarrow\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-3\sqrt{2}}< A\)
\(A^3=3+2\sqrt{2}+3-2\sqrt{2}+3\sqrt[3]{9-8}=9\)
\(\Rightarrow A^8=\left(A^3\right)^2.A^2=9^2.\left(\sqrt[3]{9}\right)^2=3^4.\sqrt[3]{81}=3^5.\sqrt[3]{3}< 3^6\)
\(\Rightarrow\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-3\sqrt{2}}< A< 3^6\)
......... Kaito Kid ........
Vậy làm theo đề đã sửa nhé.
Lời giải:
Không mất tính tổng quát. Giả sử \(a\geq b\geq c\geq 0\)
Khi đó: \(\left\{\begin{matrix} b^2-bc+c^2=b^2+c(c-b)\leq b^2\\ a^2-ca+c^2=a^2+c(c-a)\leq a^2\end{matrix}\right.\)
\(\Rightarrow P=(a^2-ab+b^2)(b^2-bc+c^2)(c^2-ca+a^2)\)
\(\leq (a^2-ab+b^2)a^2b^2\)
Áp dụng BĐT AM-GM ngược dấu ta có:
\(P\leq a^2b^2(a^2-ab+b^2)=\frac{4}{9}.\frac{3ab}{2}.\frac{3ab}{2}(a^2-ab+b^2)\)
\(\leq \frac{4}{9}\left(\frac{a^2-ab+b^2+\frac{3ab}{2}+\frac{3ab}{2}}{3}\right)^3\)
\(\Leftrightarrow P\leq \frac{4}{9}\left(\frac{(a+b)^2}{3}\right)^3\Leftrightarrow P\leq \frac{4}{243}(a+b)^6\)
Vì \(c\geq 0\Rightarrow a+b=3-c\leq 3\)
Do đó \(P\leq \frac{4}{243}.3^6=12\)
Vậy \(P_{\max}=12\). Dấu bằng xảy ra khi \((a,b,c)=(2,1,0)\) và các hoán vị của nó.
P/s: Bài này cũng chính là bài mình thi hsg vòng trường 5 năm trước :)
Ai đánh m '-' Cứ tl đi a cho e kẹo nhenn ( a hiền mà :3 )
\(\left(\sqrt{n+a}+\sqrt{n-a}\right)^2\le\left(1^2+1^2\right)\left(n+a+n-a\right)=4n\)
\(\Leftrightarrow\sqrt{n+a}+\sqrt{n-a}\le2\sqrt{n}\)
Dấu "=" hiển nhiên k xảy ra ( a>0) nên ta có đpcm
Áp dụng: Cái bđt kia ko lq đến cái bđt cm ở trên. xem lại đề
Lời giải:
Bài này bạn chịu khó tìm điểm rơi rồi áp BĐT AM-GM vào thôi:
Áp dụng BĐT AM-GM:
\(\sqrt{ab}=\frac{1}{2}\sqrt{a.4b}\leq \frac{a+4b}{4}\)
\(\sqrt[3]{abc}=\frac{1}{4}\sqrt[3]{a.4b.16c}\leq \frac{a+4b+16c}{12}\)
Cộng theo vế:
\(\Rightarrow a+\sqrt{ab}+\sqrt[3]{abc}\leq a+\frac{a+4b}{4}+\frac{a+4b+16c}{12}=\frac{4}{3}(a+b+c)\)
Mà \(a+\sqrt{ab}+\sqrt[3]{abc}=\frac{4}{3}\Rightarrow a+b+c\geq 1\)
Vậy \((a+b+c)_{\min}=1\)
\(\Rightarrow\dfrac{A}{2x^2+y^2+xy}\le\dfrac{A}{1}\Leftrightarrow\dfrac{x^2+y^2}{2x^2+y^2+xy}\le A\)
Đặt \(\dfrac{x}{y}=t\). Ta có:
\(P=\dfrac{x^2+y^2}{2x^2+y^2+xy}=\dfrac{\left(\dfrac{x^2}{y^2}\right)+\left(\dfrac{y^2}{y^2}\right)}{\left(\dfrac{2x^2}{y^2}\right)+\left(\dfrac{y^2}{y^2}\right)+\left(\dfrac{xy}{y^2}\right)}=\dfrac{t^2+1}{2t^2+1+t}\)
\(\Rightarrow2t^2P+P+Pt=t^2+1\Leftrightarrow t^2\left(2P-1\right)+Pt+P-1\)
\(\Delta=P^2-4\left(2P-1\right)\left(P-1\right)\ge0\)
\(\Rightarrow\dfrac{6-2\sqrt{2}}{7}\le P\le\dfrac{6+2\sqrt{2}}{7}\)
\(\Rightarrow A\ge P\ge\dfrac{6-2\sqrt{2}}{7}\)
Lời giải:
BĐT cần chứng minh tương đương với:
\(\frac{bc}{\sqrt{5abc(3a+2b)}}+\frac{ac}{\sqrt{5abc(3b+2c)}}+\frac{ab}{\sqrt{5abc(3c+2a)}}\geq \frac{3}{5}(*)\)
Áp dụng BĐT AM-GM:
\(5abc(3a+2b)=5ab.(3ac+2bc)\leq \left(\frac{5ab+3ac+2bc}{2}\right)^2\)
\(\Rightarrow \frac{bc}{\sqrt{5abc(3a+2b)}}\geq \frac{2bc}{5ab+3ac+2bc}=\frac{2(bc)^2}{5ab^2c+3abc^2+2b^2c^2}\)
Hoàn toàn tương tự với các phân thức còn lại, cộng theo vế ta suy ra:
\(\sum \frac{bc}{\sqrt{5abc(3a+2b)}}\geq \sum \frac{2(bc)^2}{5ab^2c+3abc^2+2b^2c^2}(1)\)
Áp dụng BĐT Cauchy_Schwarz và AM-GM:
\(\sum \frac{2(bc)^2}{5ab^2c+3abc^2+2b^2c^2}\geq 2.\frac{(bc+ab+ac)^2}{2[(ab)^2+(bc)^2+(ca)^2+4abc(a+b+c)]}=\frac{(ab+bc+ac)^2}{(ab)^2+(bc)^2+(ca)^2+4abc(a+b+c)}\)
\(=\frac{(ab+bc+ac)^2}{(ab+bc+ac)^2+2abc(a+b+c)}\geq \frac{(ab+bc+ac)^2}{(ab+bc+ac)^2+\frac{2}{3}(ab+bc+ac)^2}=\frac{3}{5}(2)\)
Từ $(1);(2)$ suy ra $(*)$ đúng. BĐT được chứng minh.
Dấu "=" xảy ra khi $a=b=c$
Đang học Bunyakovsky đúng hong :D
1)
\(S=\sqrt{a^2+4ab+b^2}+\sqrt{b^2+4bc+c^2}+\sqrt{c^2+4ac+a^2}\)
\(S^2=\left(\sqrt{a^2+4ab+b^2}+\sqrt{b^2+4bc+c^2}+\sqrt{c^2+4ac+a^2}\right)^2\)
\(\le\left(1^2+1^2+1^2\right)\left(a^2+4ab+b^2+b^2+4bc+c^2+c^2+4ac+a^2\right)\)
\(=3.2\left(a^2+b^2+c^2+2ab+2bc+2ac\right)=6.\left(a+b+c\right)^2=6.6^2=216\)
\(\Leftrightarrow S\le6\sqrt{6}."="\Leftrightarrow a=b=c=2\)
2) \(M^2=\left(\sqrt{x+1}+\sqrt{y+1}\right)^2\le\left(1^2+1^2\right)\left(x+1+y+1\right)=2.8=16\)
\(M\le4."="\Leftrightarrow x=y=3\)
3)
\(S=ab+2\left(a+b\right)\le\dfrac{\left(a+b\right)^2}{4}+\dfrac{8\left(a+b\right)}{4}\)
\(=\dfrac{\left(a+b\right)^2+8\left(a+b\right)}{4}\)
\(\left(a+b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)=2\Leftrightarrow a+b\le\sqrt{2}\)
\(\dfrac{\left(a+b\right)^2+8\left(a+b\right)}{4}\le\dfrac{2+8\sqrt{2}}{4}=\dfrac{1+4\sqrt{2}}{2}\)
\(S\le\dfrac{1+4\sqrt{2}}{2}."="\Leftrightarrow a=b=\dfrac{1}{\sqrt{2}}\)
\(\dfrac{4}{3}=a+2\sqrt{\dfrac{a}{4}.b}+\dfrac{1}{2}\sqrt[3]{\dfrac{a}{2}.2b.8c}\)
\(\dfrac{4}{3}\le a+\dfrac{a}{4}+b+\dfrac{1}{6}\left(\dfrac{a}{2}+2b+8c\right)=\dfrac{4}{3}\left(a+b+c\right)\)
\(\Rightarrow a+b+c\ge1\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{16}{21};\dfrac{4}{21};\dfrac{1}{21}\right)\)
Anh ơi cho em hỏi làm sao để tách/tìm điểm rơi như thế này ạ?
sai đề không ?
ko sai đề. mình vừa nghĩ ra rồi
P=\(a+\frac{1}{2}\sqrt{a.4b}+\frac{1}{4}\sqrt[3]{a.4b.16c} \le a+\frac {a+4b}{4}+\frac{a+4b+16c}{12}=\frac{4(a+b+c)}{3}=\frac{4}{3}\)