K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

\(a^2+b^2=c^2+d^2\Leftrightarrow a^2-c^2=d^2-b^2\Leftrightarrow\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(d+b\right)\)

mà a+b=c+d => a-c=d-b => \(\Leftrightarrow\left(a-c\right)\left(a+c\right)=\left(a-c\right)\left(d+b\right)\)

TH1: a-c=0 hay a=c, kết hợp với a+b=c+d => b=d

=>a2014+b2014=c2014+d2014

TH2: a-c\(\ne\)0 hay a\(\ne\)c, từ \(\left(a-c\right)\left(a+c\right)=\left(a-c\right)\left(d+b\right)\)=>a+c=d+b

mà a+b=c+d => a+c+a+b=d+b+c+d => 2a=2d => a=d => b=c

=>a2014+b2014=c2014+d2014

Từ 2 trường hợp trên => đpcm

15 tháng 10 2021

Ai giúp gấp nhé:D

 

15 tháng 10 2021

Ta có : a2 + b2 = c2 + d2

a2 + b2 + c2 + d2 = 2 ( a2 + b2 ) 2 nên là hợp số

Ta có : a2 + b2 + c2 + d2 - ( a + b + c + d ) 

= a ( a - 1 ) + b ( b - 1 ) + c ( c - 1 ) + d ( d - 1 ) 2

a + b + c + d 2 nên cũng là hợp số

11 tháng 3 2021

Số chính phương khi chia 3 chỉ dư 0 hoặc 1.

Trường hợp 1: 

\(a^2\equiv1\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv1\left(mod3\right)\)(loại)

Trường hợp 2: 

\(a^2\equiv1\left(mod\right)3;b^2\equiv1\left(mod3\right)\Leftrightarrow a^2+b^2\equiv2\left(mod3\right)\)(loại)

Trường hợp 3: 

\(a^2\equiv0\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv0\left(mod3\right)\) ( thỏa mãn )

Vậy có đpcm.

 

 

Giải:

Giả sử a không ⋮ 3 ➩ b không ⋮ 3

\(a^2 - 1 + b^2-1\) ⋮ 3

Mà \(a^2 +b^2\)2⋮ 3 (không có thể)

Vậy a và b ⋮ 3.

 

 

31 tháng 3 2023

Xét tổng

  Nếu cả 7 số đều lẻ thì tổng của chúng là số lẻ và do đó khác 0

Suy ra có ít nhất một trong 7 số  là số chẵn

  là số chẵn

28 tháng 7 2021

Ta có

   n4 + 4 = n4 + 4n2 + 4 – 4n2

             = (n2 + 2 )2 – (2n)2

            = (n2 + 2 – 2n )(n2 + 2 + 2n)

Vì n4 + 4 là số nguyên tố nên  n2 + 2 – 2n = 1 hoặc  n2 + 2 + 2n = 1

Mà   n2 + 2 + 2n > 1 vậy  n2 + 2 – 2n = 1 suy ra n = 1

Thử lại : n = 1 thì 14 + 4 = 5 là số nguyên tố

Vậy với n = 1 thì  n4 + 4  là số nguyên tố.

 

AH
Akai Haruma
Giáo viên
6 tháng 1

Lời giải:

Không mất tổng quát giả sử $a\leq b\leq c$

Nếu $a,b,c$ đều là số nguyên tố lẻ thì $a^2+b^2+c^2$ là số lẻ. Mà $5070$ chẵn nên vô lý.

Do đó trong 3 số $a,b,c$ tồn tại ít nhất 1 số chẵn.

Số nguyên tố chẵn luôn là số bé nhất (2) nên $a=2$

Khi đó: $b^2+c^2=5070-a^2=5066\geq 2b^2$

$\Rightarrow b^2\leq 2533$

$\Rightarrow b< 51$

$\Rightarrow b\in \left\{2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43; 47\right\}$

Thử các TH này ta thấy $(b,c)=(5,71), (29,65)$
Vậy $(a,b,c)=(2,5,71), (2,29,65)$ và các hoán vị.

vì 5070 là số chẵn ⇒ một trong 3 số a,b,c chẵn hoặc cả 3 số a,b,c chẵn 

+) cả 3 số a,b,c chẵn

=> a=2, b=2, c=2 ( vì a,b,c là các số nguyên tố )

khi đó: a2+b2+c2= 12(loại)

=> một trong 3 số a,b,c chẵn 

vì giá trị các số bằng nhau, giả sử a chẵn => a=2

khi đó: a2+b2+c2= 4+b2+c2

=> b2+c2= 5066

vì số chính phương có tận cùng là 0, 1, 4, 5, 6, 9 mà b2 và c2 là số chính phương có tận cùng là 0, 1, 4, 5, 6, 9 

=> bvà c2 có tận cùng là 0, 1, 4, 5, 6, 9 

Mà b và c lẻ 

=> bvà c2 có tận cùng là 1, 5, 9 

mà 5066 có tận cùng là 6

=> bvà c2 có tận cùng là 1, 5

=> b và c có tận cùng là 1, 5

giả sử b có tận cùng là 5=> b=5

khi đó: 25+ c= 5066

                   c= 5041=712

=> c = 71

vậy, a=2, b=5, c=71 và các hoán vị của nó

16 tháng 3 2022

Ta có: a+b+c+d-(a+b+c+d) = a(a-1)+b(b-1)+c(c-1)+d(d-1) Vì a,b,c,d nguyên dương nên a(a-1), b(b-1), c(c-1), d(d-1) là các số nguyên dương liên tiếp => a(a-1),b(b-1),c(c-1),d(d-1) chia hết cho 2 => a(a-1)+b(b-1)+c(c-1)+d(d-1) chia hết cho 2 Hay a+b+c+d-(a+b+c+d) chia hết cho 2 <=> 2( a+b) - (a+b+c+d) chia hết cho 2 (Vì a+b=c+d) Vì 2( a+b) chia hết cho 2, a+b+c+d-(a+b+c+d) chia hết cho 2 => a+b+c+d chia hết cho 2=> a+b+c+d là số chẵn Lại có: a+b+c+d ≥ 4 (a,b,c,d nguyên dương) Do đó a+b+c+d là hợp số, đccm. (Vì là số chẵn và lớn hơn 4).