K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2016

Ta có : \(A=11...122...2=11...100...0+22...2\) ( 100 c/s 1 ; 100 c/s 0 ; 100 c/s 2 )

\(=11...1.\left(100...0+2\right)\) ( 100 c/s 1 ; 100 c/s 0 )

\(=11...1.\left(3.33...34\right)\) ( 100 c/s 1 ; 99 c/s 3 )

\(=33...3.33...34\) ( 100 c/s 3 ; 99 c/s 3 )

Vậy A là tích của hai STN liên tiếp

20 tháng 12 2016

thanks

11 tháng 8 2015

1)Ta có:

\(111...11222...22\left(100 cs 1 v\text{à} 2\right)=10^{100}.111...111\left(100 cs 1\right)+222...22\left(100 cs 2\right)\)

\(=10^{100}.\frac{10^{100}-1}{9}+2.\frac{10^{100}-1}{9}=\frac{10^{100}\left(10^{100}-1\right)+2\left(10^{100}-1\right)}{9}=\frac{\left(10^{100}+2\right)\left(10^{100}-1\right)}{9}=\frac{10^{100}+2}{3}.\frac{10^{100}-1}{3}\)

\(M\text{à} \frac{10^{100}+2}{3}\ne\frac{10^{100}-1}{3} \)

\(\Rightarrow111...11222..2\left(100 cs 1 v\text{à} 2\right) \) không phải là tích 2 số tự nhiên

2) Để dacb chia hết cho 4 thì cb chia hết cho 4

Ta có :

cb=10c+b=8c+2c+b

Mà 8c chia hết cho 4 nên

2c+b cũng phải chia hết cho 4(đpcm)

13 tháng 3 2019

3^21*(1+3+3^2)+3^24*(1+3+3^2)+3^27*(1+3+3^2)=13*3^21+13*3^24+13*3^27=13*(3^21+3^24+3^27)chia hết cho 13

Giải nghĩa ^:mũ

                *:nhân

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Lời giải:
Đặt \(\underbrace{111....1}_{100}=a\Rightarrow 9a+1=1\underbrace{000...0}_{100}\)

Khi đó:
\(\underbrace{1111....1}_{100}\underbrace{222....2}=\underbrace{111...1}_{100}\times 1\underbrace{00...0}_{100}+\underbrace{222....2}_{100}\)

\(a(9a+1)+2a=9a^2+3a=3a(3a+1)\) là tích của 2 số
 tự nhiên liên tiếp $3a, 3a+1$

Ta có đpcm.

5 tháng 12 2017

Sơ đồ con đường

Lời giải chi tiết

Bước 1. Phân tích sao cho tổng đó thành tích các thừa số trong đó có một thừa số chia hết cho 11.

Bước 2. Áp dụng tính chất chia hết của một tích.

Ta có:

  A = 2 2 + 2 3 + 2 6 = 2 2 + 2 2 + 2 4 = 2.22 ⇒ A ⋮ 11

7 tháng 9 2018

2 tháng 7 2019

1) Ta có : 11a + 22b + 33c

      = 11a + 11.2b + 11.3c

      = 11.(a + 2b + 3c) \(⋮\)11

=> 11a + 22b + 33c \(⋮\)11

2) 2 + 22 + 23 + ... + 2100

= (2 + 22) + (23 + 24) + ... + (299 + 2100)

= (2 + 22) + 22.(2 + 22) + ... + 298.(2 + 22)

= 6 + 22.6 + ... + 298.6

= 6.(1 + 22 + .. + 298)

= 2.3.(1 + 22 + ... + 298\(⋮\)3

=> 2 + 22 + 23 + ... + 2100 \(⋮\)3

3) Ta có:  abcabc = abc000 + abc

 = abc x 1000 + abc 

 = abc x (1000 + 1)

= abc x 1001 

= abc .7. 13.11 (1)

= abc . 7 . 13 . 11 \(⋮\)

=> abcabc \(⋮\)7

=> Từ (1) ta có : abcabc = abc x 7.11.13 \(⋮\)11

     => abcabc \(⋮\)11

=> Từ (1) ta có :  abcabc = abc . 7.11.13 \(⋮\)           13

    => => abcabc \(⋮\)13

2 tháng 7 2019

1

.\(11a+22b+33c=11\left(a+2b+3c\right)⋮11\) 

\(\Rightarrow11a+22b+33c⋮11\left(đpcm\right)\) 

hc tốt