K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a) chữ số tận cùng = 3

b) Chữ số tận cùng =7

 

18 tháng 10 2016

a) bn tự lm

b) n + 2 chia hết cho n2 + 1

=> n.(n + 2) chia hết cho n2 + 1

=> n2 + 2n chia hết cho n2 + 1

=> n2 + 1 + 2n - 1 chia hết cho n2 + 1

Do n2 + 1 chia hết cho n2 + 1 => 2n - 1 chia hết cho n2 + 1 (1)

Lại có: n + 2 chia hết cho n2 + 1 (theo đề bài)

=> 2.(n + 2) chia hết cho n2 + 1

=> 2n + 4 chia hết cho n2 + 1 (2)

Từ (1) và (2) => (2n + 4) - (2n - 1) chia hết cho n2 + 1

=> 2n + 4 - 2n + 1 chia hết cho n2 + 1

=> 5 chia hết cho n2 + 1

Mà \(n\in N\) nên \(n^2+1\ge1\)

\(\Rightarrow n^2+1\in\left\{1;5\right\}\)

\(\Rightarrow n^2\in\left\{0;4\right\}\)

\(\Rightarrow n\in\left\{0;2\right\}\)

Thử lại ta thấy trường hợp n = 2 không thỏa mãn

Vậy n = 0

c) bn tự lm

18 tháng 10 2016

đon giản wá

c) 5A = 5^2 + 5^3 +....+5^97

5A - A = 5^97-5

A = (5^95 - 5)/4

d) 4A + 5 = 5^n -3

5^97 = 5^n -3

Nhận xét : 5^97 chia hết cho 5

5^n - 3 không chia hết cho 5

Suy ra ko có sộ tự nhiên n thỏa mãn

a) A = 5(5+1) + 5^3(5+1)+...+5^95(5+1)

 A = 5.6 +5^3 . 6 +....+ 5^95.6

A = 6 . ( 5+ 5^3 + 5^5+....+5^95)

Suy ra A chia hết cho 6

b) Xét 5^1 + 5^3 + 5^5+....+5^95

Có: (95-1)/2 + 1 = 48 số hạng

Mà 5^1 , 5^3, 5^5,...., 5^95 đều có chữ số tận cùng = 5

Suy ra 5^1 + 5^3 +....+5^95 có chữ số tận cùng = 0

Vậy A có chữ số tận cùng là 0

27 tháng 4 2015

    A = 5+ 52+ ...+ 596

=> 5A = 52+ 53+...+ 597

=> 5A- A = ( 52+ 53+ ...+ 597) - ( 5+ 52+...+ 596)

=> 4A= 597-  5

=> A= ( 597 - 5​)/ 4​

Vì 597 có chữ số tận cùng là 5 nên 597- 5 có chữ số tạn cùng là (......5)- 5 = 0

=>A= ( 597-5 )/ 4= (......0)/4 = (.....0)

Vậy A có chữ số tận cùng là 0

 

12 tháng 3 2018

B, nếu 6n+3:3n+6

=3.(2n+1):3.(n+2)

=2n+1:n+2

=(n+2).2-3:n+2

=3:n+2

Ư(3){-1;1;-3;3}

N+2        1         -1           3          -3

N.            -1         -3.         1.           -5

Vậy n{-1;-3;1;-5}

22 tháng 12 2016

1a số tận cùng là 2

b số tận cùng là 4

c số tận cùng là 1 

d số tận cùng là 1 

22 tháng 12 2016

bài 1:

a) 2

b) 6

c) 1

d) 3

2 tháng 9 2023

Bài 1 :

\(\left(7^{2023}-5.7^{2022}\right):7^{2020}\)

\(=7^{2023}:7^{2020}-5.7^{2022}:7^{2020}\)

\(=7^{2023-2020}-5.7^{2022-2020}\)

\(=7^3-5.7\)

\(=7\left(7^2-5\right)\)

\(=7\left(49-5\right)\)

\(=7.44=308\)

Bài 2 : \(n+6⋮n+2\left(n\inℕ\right)\)

\(\Rightarrow n+6-\left(n+2\right)⋮n+2\)

\(\Rightarrow n+6-n-2⋮n+2\)

\(\Rightarrow4⋮n+2\)

\(\Rightarrow n+2\in U\left(4\right)=\left\{1;2;4\right\}\)

\(\Rightarrow n\in\left\{-1;0;2\right\}\)

\(\Rightarrow n\in\left\{0;2\right\}\left(n\inℕ\right)\)

2 tháng 9 2023

Bài 3: 

3a, \(19^{8^{1945}}\) Vì 8 ⋮ 2 ⇒ 81945 ⋮ 2 ⇒ 81945 = 2k (k \(\in\) N*)

Ta có: \(19^{8^{1945}}\) = \(19^{2k}\)  = \((\)192)k = \(\overline{...1}\)k = 1 

3b, 372023 = (374)505. 373 = \(\overline{...1}\)505.\(\overline{..3}\) = \(\overline{...3}\)

3c, 53997 = (534)249.53 = \(\overline{...1}\)249. 53 = \(\overline{...3}\) 

3d, 84567 = (842)283.84 = \(\overline{...6}\)283 . 84 = \(\overline{...4}\)