Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(5+5^2+5^3+....+5^{12}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+.......+\left(5^{11}+5^{12}\right)\)
\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+........+5^{10}\left(5+5^2\right)\)
\(=\left(5+5^2\right).\left(1+5^2+.......+5^{10}\right)\)
\(=30.\left(1+5^2+......+5^{10}\right)⋮30\)(1)
Ta lại có: \(5+5^2+5^3+......+5^{12}\)
\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+.......+\left(5^{10}+5^{11}+5^{12}\right)\)
\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+........+5^{10}\left(1+5+5^2\right)\)
\(=5.31+5^4.31+......+5^{10}.31\)
\(=31\left(5+5^4+......+5^{10}\right)⋮31\)(2)
Từ (1) và (2) \(\Rightarrowđpcm\)
7) Bạn xem lại đề. Phải chia hết cho 26 chứ ???
8) Đặt A = 2 + 22 + 23 + ... + 2100
Nhóm 2 số lại:
A= 2(1+2)+23(1+2)+25(1+2)+...+299(1+2)=2.3+23.3+25.3+...+299.3=3(2+23+25+...+299) chia hết cho 3
Tương tự nhóm 4 số sẽ được A chia hết cho 5.
A chia hết cho 3 và 5 nên A chia hết cho 15
Ta có:
\(A=1+3+3^2+...+3^{10}+3^{11}\)
\(A=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(A=40+...+3^8.\left(1+3+3^2+3^3\right)\)
\(A=40+...+3^8.40\)
\(A=40.\left(1+...+3^8\right)\)
Vì \(40⋮5\) và \(8\) nên \(40.\left(1+...+3^8\right)⋮5\) và \(8\)
Vậy \(A⋮5\) và \(8\)
_________
Ta có:
\(B=1+5+5^2+...+5^7+5^8\)
\(B=\left(1+5+5^2\right)+...\left(5^6+5^7+5^8\right)\)
\(B=31+...+5^6.\left(1+5+5^2\right)\)
\(B=31+...+5^6.31\)
\(B=31.\left(1+...+5^6\right)\)
Vì \(31⋮31\) nên \(31.\left(1+...+5^6\right)⋮31\)
Vậy \(B⋮31\)
\(#WendyDang\)
A chia hết cho 2 sẵn rồi
CM A chia hết cho 30:
\(2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)+....+2^{96}\left(2+2^2+2^3+2^4\right)\)
\(=30.\left(1+2^4+...+2^{96}\right)⋮30\)
Gợi ý;
B chia hết cho 5 sắn rồi
chia hết cho 6 nhóm 2 số vào
Chi hết cho 31 nhóm 3 số vào