K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2019

A chia hết cho 2 sẵn rồi 

CM A chia hết cho 30:

\(2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)+....+2^{96}\left(2+2^2+2^3+2^4\right)\)

\(=30.\left(1+2^4+...+2^{96}\right)⋮30\)

27 tháng 6 2019

Gợi ý;

B chia hết cho 5 sắn rồi

chia hết cho 6 nhóm 2 số vào

Chi hết cho 31 nhóm 3 số vào

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

9 tháng 6 2017

chia hết cho con cờ

25 tháng 10 2015

nhiêu thế nhìn hoa cả mắt @_@

2 tháng 1 2019

Ta có: \(5+5^2+5^3+....+5^{12}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+.......+\left(5^{11}+5^{12}\right)\)

\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+........+5^{10}\left(5+5^2\right)\)

\(=\left(5+5^2\right).\left(1+5^2+.......+5^{10}\right)\)

\(=30.\left(1+5^2+......+5^{10}\right)⋮30\)(1)

Ta lại có: \(5+5^2+5^3+......+5^{12}\)

\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+.......+\left(5^{10}+5^{11}+5^{12}\right)\)

\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+........+5^{10}\left(1+5+5^2\right)\)

\(=5.31+5^4.31+......+5^{10}.31\)

\(=31\left(5+5^4+......+5^{10}\right)⋮31\)(2)

Từ (1) và (2) \(\Rightarrowđpcm\)

10 tháng 11 2019

lời giải là ngáo ngơ lơ tơ mơ

18 tháng 7 2016

7) Bạn xem lại đề. Phải chia hết cho 26 chứ ???

8) Đặt A = 2 + 22 + 23 + ... + 2100

Nhóm 2 số lại: 

A= 2(1+2)+23(1+2)+25(1+2)+...+299(1+2)=2.3+23.3+25.3+...+299.3=3(2+23+25+...+299) chia hết cho 3

Tương tự nhóm 4 số sẽ được A chia hết cho 5.

A chia hết cho 3 và 5 nên A chia hết cho 15

18 tháng 7 2016

96 mà bn

18 tháng 10 2023

Ta có:

\(A=1+3+3^2+...+3^{10}+3^{11}\)

\(A=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(A=40+...+3^8.\left(1+3+3^2+3^3\right)\)

\(A=40+...+3^8.40\)

\(A=40.\left(1+...+3^8\right)\)

Vì \(40⋮5\) và \(8\) nên \(40.\left(1+...+3^8\right)⋮5\) và \(8\)

Vậy \(A⋮5\) và \(8\)

_________

Ta có:

\(B=1+5+5^2+...+5^7+5^8\)

\(B=\left(1+5+5^2\right)+...\left(5^6+5^7+5^8\right)\)

\(B=31+...+5^6.\left(1+5+5^2\right)\)

\(B=31+...+5^6.31\)

\(B=31.\left(1+...+5^6\right)\)

Vì \(31⋮31\) nên \(31.\left(1+...+5^6\right)⋮31\)

Vậy \(B⋮31\)

\(#WendyDang\)