Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
a) Ta có :
1 + 2 + 22 + ... + 27
= (1 + 2) + 22 .(1 + 2) + ... + 26 . (1 + 2)
= 3 + 22 . 3 + ... 26 . 3 \(⋮\)3
cau b nua ban
neu giai duoc thi giai con khong thi minh tu giai cung duoc
B ( 13 ) \(\in\){ -1 ; 1 ; -13; 13 }
\(\Rightarrow\)x - 4 = -1 ; 1 ; -13 ; 13
\(\Leftrightarrow\)x = 3 ; 5 ; -9 ; 17
4 + 4^3 + 4^5 + 4^7 + ... + 4^23
= ( 4 + 4^3 ) + ( 4^5 + 4^7 ) +.....+ ( 4^22 + 4^23)
=4( 1+16 ) + 4^5( 1+16 ) +....+ 4^22( 1+ 16 )
=4 x 17 + 4^5 x 17+....+ 4^22 x 17 chia hết cho 68
Câu 2:
1+3+3^2+3^3+....+3^2000
=( 1+3 +3^2 ) + ( 3^3 + 3^4 + 3^5 ) +.....+ ( 3^ 1998 + 3^1999 + 3^2000)
=1( 1+ 3 + 9 ) + 3^3 + ( 1+ 3 + 9 ) +......+ 3^1998+( 1+ 3 + 9 )
= 1 x 13+ 3^3 x 13 +......+ 3^1998 x 13 chia hết cho 13
k mk nha lần sau mk k lại
Câu 1 nha : 4+4^3+4^5+4^7+....+4^23 = (4+4^3)+(4^5+4^7)+....+(4^21+4^23)
= 68 + 4^4.(4+4^3)+....+4^20.(4+4^3) = 68 + 4^4.68 + .... + 4^20.68
=68.(1+4^4+....+4^20) chia hết cho 68
Câu 2 nha 1+3+3^2+...+3^2000 = (1+3+3^2)+(3^3+3^4+3^5)+....+(3^1998+3^1999+3^2000)
= 13 + 3^3.(1+3+3^2)+....+3^1998.(1+3+3^2) = 13+3^3.13+....+3^1998.13
=13.(1+3^3+....+3^1998) chia hết cho 13
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
1.a)x+7=-5-14
x+7=-19
x=-19-7
x=-26
Vậy x=-26
b)3x-4=(-2)3-11
3x-8=-11
3x=-11+8
3x=-3
x=-3:3
X=-1
Vậy x=-1
c)11+(4x-11)=-9-(-15)
11+(4x-11)=-9+15
11+(4x-11)=6
4x-11=6-11
4x=6
x=\(\dfrac{6}{4}\)
Vậy x=\(\dfrac{6}{4}\)
d)\(\left|2x-1\right|=5\)
⇒2x-1=\(\pm5\)
+Nếu 2x-1=5
2x=6
x=6:2
x=3
Vậy x=3
+Nếu 2x-1=-5
2x=-5+1
2x=-4
x=-4:2
x=-2
Vậy xϵ{3;-2}
e)\(\left|x-7\right|+3=25\)
\(\left|x-7\right|=22\)
⇒x-7=\(\pm22\)
+Nếu x-7=22
x=22+7=29
+Nếu x-7=-22
x=-22+7
x=-15
Vậy xϵ{29;-15}
a) 2n + 1 \(⋮\)n - 5
=> 2.( n - 5 ) + 1 + 10 \(⋮\)n - 5
=> 2.( n - 5 ) + 11 \(⋮\)n - 5
=> 11 \(⋮\)n - 5 [ vì 2.( n - 5 ) \(⋮\)n - 5 ]
=> n - 5 \(\in\)Ư(11) = { -11 ;- 1;1 ; 11 }
=> n \(\in\){ -6; 4;6;16 }
Vậy: n \(\in\){ -6; 4;6;16 }
b) n2 + 3n - 13 \(⋮\)n + 3
=> n.n + 3n - 13 \(⋮\)n + 3
=> n.( n+ 3 ) + 3 . ( n + 3 ) - 13 - 3n - 9 \(⋮\)n + 3
=> 13 - 3n - 9 \(⋮\)n + 3 [ vì n.( n + 3 ) và 3.( n + 3 ) \(⋮\)n + 3 ]
=> 3n - 22 \(⋮\)n + 3
=>3.( n - 3 ) - 22 - 9 \(⋮\)n + 3
=> 3.( n - 3 ) - 31 \(⋮\)n + 3
=> 31 \(⋮\)n + 3 [ vì 3. ( n - 3 ) \(⋮\)n + 3 ]
=> n + 3 \(\in\)Ư ( 31 ) = { -31 ; -1 ; 1 ; 31 }
=> n \(\in\){ -34 ; -4; -2 ; 28 }
Vậy: n \(\in\){ -34 ; -4; -2 ; 28 }
c) n2 + 3 \(⋮\) n - 1
=> n.n + 3 \(⋮\) n - 1
=> n.( n - 1 ) + 3 - n \(⋮\) n - 1
=> 3 - n \(⋮\) n - 1 [ vì n.( n - 1 ) \(⋮\) n - 1 ]
=> n - 3 \(⋮\) n - 1
=> ( n - 1 ) - 2 \(⋮\) n - 1
=> n - 1 \(\in\)Ư( 2 )= { -2 ; - 1; 1 ; 2 }
=> n \(\in\){ -1 ; 0 ;2 ;3 }
vậy: n \(\in\){ -1 ; 0 ;2 ;3 }
1 + 2 + 3 +... + 100 = (100 + 1) x 100 : 2 = 4950
x + 4950 = 5056
x = 5056 - 4950 = 106