K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

Ta có : 

\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)

\(\frac{y}{x+y+z+t}< \frac{y}{y+z+t}< \frac{y+x}{x+y+z+t}\)

\(\frac{z}{x+y+z+t}< \frac{z}{z+t+x}< \frac{z+y}{x+y+z+t}\)

\(\frac{t}{x+y+z+t}< \frac{t}{t+x+y}< \frac{t+z}{x+y+z+t}\)

Cộng vế với vế ta được :

\(\frac{x+y+z+t}{x+y+z+t}< \frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}< \frac{2\left(x+y+z+t\right)}{x+y+z+t}\)

\(\Rightarrow1< M< 2\)

Do đó M ko nhận giá trị nguyên

11 tháng 3 2017

mình biết làm nhưng ghi phân  số mỏi tay quá

23 tháng 12 2016

a)\(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=\frac{a\left(a+1\right)}{a+1}+\frac{3}{a+1}=a+\frac{3}{a+1}\in Z\)

\(\Rightarrow3⋮a+1\)

\(\Rightarrow a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow a\in\left\{0;-2;2;-4\right\}\)

b) Phần 1

\(x-2xy+y=0\)

\(\Rightarrow2x-4xy+2y=0\)

\(\Rightarrow2x-4xy+2y-1=-1\)

\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)

\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)

Lập bảng xét Ư(-1)={1;-1}

Phần 2:

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Leftrightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\Leftrightarrow\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)

+)XÉt \(x+y+z+t\ne0\) suy ra \(x=y=z=t\), Khi đó \(P=1+1+1+1=4\)

+)Xét \(x+y+z+t=0\) suy ra x+y=-(z+t); y+z=-(t+x); (z+t)=-(x+y); (t+x)=-(y+z)

Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Vậy P có giá trị nguyên 

29 tháng 8 2016

từ dữ kiện của đề bài cho.

ta cộng lần lượt các vế của đẳng thức với 1 

sau đó quy đồng ta sẽ dễ dàng nhìn thấy x=y=z=t

suy ra P=4

23 tháng 11 2019

\(\Rightarrow\left\{{}\begin{matrix}A=4\\A=-4\end{matrix}\right.\)

Vậy biểu thức A luôn có giá trị nguyên (đpcm).

Chúc bạn học tốt!

15 tháng 2 2019

ĐK:y+z+t,z+t+x,t+x+z,x+z+y khác 0

x+y+t+z khác 0

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{x+y+z+t}{3\left(x+y+z+t\right)}\)

mà x+y+z+t khác 0 nên:

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{1}{3}\Rightarrow x=y=z=t\)

\(\Rightarrow P=4\left(\text{nguyên}\right).\text{Vậy: P nguyên}\)

15 tháng 2 2019

@shitbo : Cơ sở đâu mà bạn cho rằng: x + y + z + t khác 0? Nếu x + y + z + t = 0 thì P = -1 ok?

16 tháng 3 2017

\(x;y;z;t\in N\)nên ta có :

\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)

\(\frac{y}{x+y+z+t}< \frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)

\(\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)

\(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)

Cộng vế với vế ta được :

\(\frac{x+y+z+t}{x+y+z+t}< \frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}< \frac{2\left(x+y+z+t\right)}{x+y+z+t}\)

\(\Rightarrow1< M< 2\)

=> M có giá trị không phải là số tự nhiên

16 tháng 3 2017

Với\(x,y,z,t\in\)N*,ta có :\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x}{x+y}\left(1\right)\)

\(\frac{y}{x+y+z+t}< \frac{y}{x+y+t}< \frac{y}{x+y}\left(2\right);\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z}{z+t}\left(3\right)\)

\(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t}{z+t}\left(4\right)\)

Cộng (1),(2),(3),(4),vế theo vế,ta có :\(\frac{x+y+z+t}{x+y+z+t}< M< \frac{x+y}{x+y}+\frac{z+t}{z+t}\)hay 1 < M < 2 

Vậy M không phải là số tự nhiên

30 tháng 12 2017

Nếu x+y+z+t = 0 => x+y = -(z+t) ; y+z = -(x+t) ; z+t = -(y+x) ; t+x = -(z+y)

=> Biểu thức = -1-1-1-1 = -4

Nếu x+y+z+t khác 0 thì :

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

x/y+z+t = y/z+t+x = z/t+x+y = t/x+y+z = x+y+z+t/3x+3y+3z+3t = 1/3

=> x=1/3.(y+z+t) ; y = 1/3.(z+t+x) ; z = 1/3.(t+x+y) ; t = 1/3.(x+y+z)

=> x=y=z=t

=> A = 1+1+1+1 = 1

Vậy ...........

k mk nha

30 tháng 12 2017

có ghi ngược đề không vậy ạ? :>