Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: \(3n^3+10n^2-5⋮3n+1\)
\(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;-3;3\right\}\)
hay \(n\in\left\{0;-1;1\right\}\)
CẤM KÉO CẦU THANG XUỐNG
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬TUI-NÓI-CẤM
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬Dừng lại! Đừng đi xuống.
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬ Bạn nghe tui! Đừng đi xuống đó
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬Bạn thật là đần độn khi cứ phớt lờ câu nói của tui như vậy đó....
╬═╬
╬═╬
╬═╬
╬═╬Nghiêm túc!!!TUI NÓI DỪNG LẠI!
╬═╬Cơ hội cuối cùng...đừng xuống đó
╬═╬
╬═╬
bây giờ bạn sẽ có 5 năm không may mắn, trừ khi bạn đăng câu này trên 5 web khác nhau~~
Đã bảo rồi mà ko nghe người ta cơ 🙂CẤM KÉO CẦU THANG XUỐNG
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬TUI-NÓI-CẤM
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬Dừng lại! Đừng đi xuống.
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬ Bạn nghe tui! Đừng đi xuống đó
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬
╬═╬Bạn thật là đần độn khi cứ phớt lờ câu nói của tui như vậy đó....
╬═╬
╬═╬
╬═╬
╬═╬Nghiêm túc!!!TUI NÓI DỪNG LẠI!
╬═╬Cơ hội cuối cùng...đừng xuống đó
╬═╬
╬═╬
bây giờ bạn sẽ có 5 năm không may mắn, trừ khi bạn đăng câu này trên 5 web khác nhau~~
Đã bảo rồi mà ko nghe người ta cơ 🙂
a.
Ta có \(BD||AC\) (cùng vuông góc AB)
Áp dụng định lý Talet trong tam giác ACE: \(\dfrac{BE}{BA}=\dfrac{DE}{DC}\)
b.
Ta có \(IK||BD||AC\) \(\Rightarrow EI||AC\)
Áp dụng Talet: \(\dfrac{DC}{ED}=\dfrac{DA}{ID}\Rightarrow\dfrac{DC}{DC+ED}=\dfrac{DA}{DA+ID}\Rightarrow\dfrac{DC}{CE}=\dfrac{DA}{AI}\) (1)
Do \(BD||EK\), áp dụng Talet trong tam giác CEK: \(\dfrac{BD}{EK}=\dfrac{CD}{CE}\) (2)
Do \(BD||EI\), áp dụng Talet trong tam giác AEI: \(\dfrac{BD}{EI}=\dfrac{AD}{AI}\) (3)
Từ(1);(2);(3) \(\Rightarrow\dfrac{BD}{EK}=\dfrac{BD}{EI}\Rightarrow EK=EI\)
`3)(x+4)/(x-3)-(x-3)/(x+4)=(x^2+18x+7)/(x^2+x-12)`
`đk:x ne 3,x ne -4`
Nhân 2 vế với `(x-3)(x+4) ne 0` ta có:
`(x+4)^2-(x-3)^2=x^2+18x+7`
`<=>x^2+8x+16-x^2+6x-9=x^2+18x+7`
`<=>14x+7=x^2+18x+7`
`<=>x^2+4x=0`
`<=>x(x+4)=0`
Vì `x ne -4=>x+4 ne 0`
`<=>x=0`
Vậy `S={0}`
Em tách ra mỗi lần hỏi đăng 1-3 bài thôi để nhận hỗ trợ sớm nhất nha em!
Bài 3:
\(b,\Leftrightarrow\left(x+8\right)\left(x+8-3x\right)=0\\ \Leftrightarrow\left(x+8\right)\left(8-2x\right)=0\\ \Leftrightarrow2\left(4-x\right)\left(x+8\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)
Trả lời:
4, \(\left(\frac{x}{x^2-25}-\frac{x-5}{x^2+5x}\right):\frac{2x-5}{x^2+5x}+\frac{x}{5-x}\) \(\left(ĐKXĐ:x\ne\pm5;x\ne0\right)\)
\(=\left[\frac{x}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x+5\right)}\right]:\frac{2x-5}{x\left(x+5\right)}+\frac{x}{5-x}\)
\(=\left[\frac{x^2}{x\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)^2}{x\left(x-5\right)\left(x+5\right)}\right]:\frac{2x-5}{x\left(x+5\right)}+\frac{x}{5-x}\)
\(=\frac{x^2-\left(x-5\right)^2}{x\left(x-5\right)\left(x+5\right)}.\frac{x\left(x+5\right)}{2x-5}+\frac{x}{5-x}\)
\(=\frac{x^2-x^2+10x-25}{x\left(x-5\right)\left(x+5\right)}.\frac{x\left(x+5\right)}{2x-5}+\frac{x}{5-x}\)
\(=\frac{10x-25}{x\left(x-5\right)\left(x+5\right)}.\frac{x\left(x+5\right)}{2x-5}+\frac{x}{5-x}\)
\(=\frac{5\left(2x-5\right)}{x\left(x-5\right)\left(x+5\right)}.\frac{x\left(x+5\right)}{2x-5}+\frac{x}{5-x}\)
\(=\frac{5}{x-5}-\frac{x}{x-5}=\frac{5-x}{x-5}=\frac{-\left(x-5\right)}{x-5}=-1\)